What Matters for STEM Degree Completion?
Expanding and Diversifying College Graduates
Kevin Eagan, Sylvia Hurtado, and Mitchell Chang
University of California, Los Angeles

Analyses

Analytic Strategy
- Hierarchical generalized linear modeling
 - Four successive models:
 1) Institutional predictors only, without selectivity
 2) Institutional predictors only, with selectivity
 3) All institutional and predictor-level predictors
 4) All institutional and individual predictors, with the effect of Black allowed to vary across institutions

Significant results discussed in terms of change in likelihood of earning a STEM degree vs. no degree in STEM field, or earning a STEM degree vs. no degree

Independent Variables
- Individual-Level Predictors:
 - Academics (high school grades, SAT scores, high school academic activities; Demographics/Background (race, sex, SES); STEM identity; STEM career aspirations)
 - Institutional-Level Predictors:
 - Institutional characteristics (selectivity, HBCU control); STEM programming/policies (undergraduate research programs); undergraduate STEM retention initiatives, formalized opportunities for faculty mentorship of students

Ipsil (2009) noted significant differences in STEM completion across racial/ethnic groups persist.

Ipsil (2009) also noted higher STEM degree completion rates at campuses that offer these opportunities, as well as the importance of institutional research opportunities.

Prior Literature
Success is determined by more than a combination of individual ambition and prior success—institutional opportunity structures matter as well.

Three most important student-level predictors of STEM degree completion:
- Rigorous high school curriculum
- High standardized test scores
- Strong grades in high school

However, even after accounting for variability in the above characteristics, differences in STEM completion across racial/ethnic groups persist.

Institutional context matters
- STEM degree completion likelihoods for under-represented racial minority (URM) students are highest at minority-serving institutions, particularly HBCUs
- Selectivity (average SAT scores) has mixed effects
 - Higher degree completion rates across all majors at high selectivity institutions
 - Lower STEM degree persistence for URMs at high selectivity schools

Five-Year STEM Completion Rates by Extent of Institutional Research Opportunities

Undergraduate research programs:
- More likely to complete a STEM degree

Five-Year STEM Degree Completion, by Race

Implications for Practice

Undergraduate research opportunities:
- Expand undergraduate research opportunities
- Currently primarily funded by external agencies, but need not be
- Encourage faculty to include undergraduate students on their research projects (see Eagan et. al., in press)

Target funding at lower-selectivity institutions, which are less likely to offer research opportunities

Other research-related opportunities:
- In addition to research involvement, identify opportunities for undergraduates to present their findings at conferences or publish their results
- Descriptive comparisons suggest significantly higher STEM completion rates at campuses that offer these opportunities

Identity that makes research opportunities work:
- Qualitatively investigate STEM retention programs on campuses that offer them
- What specifically are these programs doing to retain students?
- What practices from these programs can be adopted or scaled up across other campuses?

Next Steps
- In the future, we plan to:
 - Collect and analyze six-year completion data
 - Conduct separate analyses by race
 - Conduct separate analyses by academic discipline
 - Create an interface to enable campuses to calculate expected STEM completion rates

For Further Information
heri@ucla.edu
http://www.heri.ucla.edu/nih

Project Team
Sylvia Hurtado, Co-Principal Investigator
Mitchell Chang, Co-Principal Investigator
Christopher B. Newman, Research Analyst
Sylvia Hurtado, Co-Principal Investigator
Kevin Eagan, Postdoctoral Research Fellow
Kendall, Research Fellow
Josephine Gasiewski, Postdoctoral Research Fellow
Aaron Pearl, Administrative Specialist
Monica Lin, Public Administrator

For Further Information
heri@ucla.edu
http://www.heri.ucla.edu/nih

What specifically are these programs doing to retain Asian American students?
Academics (high school grades, SAT scores, high school academic activities; Demographics/Background (race, sex, SES); STEM identity; STEM career aspirations)

What are the key predictors of STEM degree completion for Asian American students?

Data

Three data sources:
- Initial-student-level data: 2004 CIRP Freshman Survey
- Student degree completion data: 2009 National Student Clearinghouse
- Institution-level data: 2009 Best Practices Survey

Sample:
- 55,178 STEM aspirants across 237 institutions
- Students: 47% Female; 10% Black, 7% Latino, 2% Native American, 13% Asian American, 65% White
- Institutions: 78% private; 4% HBCUs; average selectivity 1140

Missing Data:
- Multiple imputation for missing data

Purpose
As the European Union and China begin to outpace the U.S. in the production of scientists, the U.S. government has stepped up efforts to review and reinvest in programs and policies related to undergraduate education in science, technology, engineering, and mathematics (STEM). This study examines the effectiveness of such programmatic and policy initiatives as they are implemented at an institutional level. Using multilevel modeling, we examine how institutional programs and policies, as well as student background characteristics, together affect STEM completion. In particular, we examine how institutional structures of opportunity mitigate or enhance the impact that students’ background characteristics have on STEM completion.