The Faculty Role and Institutional Performance in STEM Degree Attainment

June 20, 2016

Sylvia Hurtado, Kevin Eagan, Principal Investigators
Tanya Figueroa, Postdoctoral Scholar
Ashlee Wilkins, Graduate Student Research Assistant
Krystle Cobian, Graduate Student Research Assistant
Higher Education Research Institute, UCLA
NIH Grant \# 5R01GM071968-12
HHMI Grant \# 52008003

Introduction

A great deal of national interest has focused on improving STEM teaching in colleges and universities in order to accelerate the production of the next generation of scientists, which in turn, will allow the U.S. to remain internationally competitive in research excellence (PCAST, 2012). However, the prevailing thought in academia is that highly productive scholars are not typically master teachers who use evidence-based teaching practices. Yet, Elsen and colleagues (2009) found that students benefited from learning environments where faculty were allowed the flexibility to structure their own classes and to use pedagogy that supported a tight linkage between teaching and research. Although several studies have suggested little or no correlation between effective teaching and standard measures of research productivity (Hattie \& Marsh, 1996), distinguished HHMI professors have contested that there can be synergy to increase the effectiveness of both (Anderson et al., 2011). Jones (2013) offered a counter narrative to the dominant discourse about teaching and research by instead focusing on the nexus between the two. Her conceptual framework, Scholarship Teaching Action Research (STAR), posits that the underlying tension within the discourse around teaching and research is structural, as research and teaching are commonly placed on opposite ends of a continuum. She offers three ways to conceptualize the link between research and teaching, which we draw on for the studies in this report. There may well be a link between excellent teaching and research at institutions with higher levels of STEM degree productivity, but we have little knowledge about these conditions across campus contexts. We investigated this phenomenon on a national level in order to identify the conditions, contexts, and faculty practices associated with STEM degree production.

This report builds on faculty data obtained from national surveys and institutionallyreported data on degree production as required by the U.S. Department of Education. In 2013-14, the Higher Education Research Institute, UCLA administered the national faculty survey and invited institutions across the country to assess faculty work/life on their campuses. We added questions associated with undergraduate teaching and assessment to the survey, targeting campuses that varied according to STEM degree productivity (described in the next section) with the support from HHMI (Grant \#52008003) and NIH (5R01GM071968-12). Our goal was to investigate the role of faculty in student talent development and conditions where it is synonymous with excellence in research. This is particularly important when identifying institutions that have the potential to diversify the STEM workforce.

Organization of the Report

This report highlights key findings from analyses that addressed three central questions:

1. What are the characteristics, beliefs, and teaching practices of STEM faculty nationally, and are the faculty at exemplar institutions unique in any way?
2. What is the relationship between use of evidence-based teaching practice, undergraduate engagement in research, and faculty research productivity in these high producers of STEM degrees? What kinds of institutions may improve their degree productivity with investment in any of these areas?
3. What is the faculty profile at institutions that are more efficient in producing degrees among women and URMs in STEM?

We provide analyses and results to answer each of these questions using national data to compare faculty beliefs and practices across institutional contexts by degree productivity. In addition, we compared 39 institutions that have received HHMI funding within the last two rounds of awards with 226 institutions who had not received funding during this time frame. Specifically, an HHMI institution is one that is a 4 -year college that won HHMI funding in 2012 or 2008 or a university that won HHMI funding in 2010 or 2014. This was conducted in response to Question 1 and similar analyses were conducted to compare faculty at institutions with higher degree productivity for Black, Latina/o and Women across institution types for Question 3. (Full tables are available in the Appendices). Question 2 reexamines the structural relationships between student-centered teaching practices, scholarly productivity, and a new measure of nexus that integrates discipline-based research practices in course assignments for students. The results begin to indicate the conditions under which there is a positive relationship between teaching and research, which hold true regardless of gender, rank, and teaching load.

Research Method

Data Source and Sample

Data from this study come from the Higher Education Research Institute's (HERI) 20132014 Faculty Survey, which gathers information on the teaching, research, and service practices of faculty, their perceptions of campus and departmental climates, goals related to undergraduate education, and their personal values. HERI employed a stratified institutional sampling scheme for the faculty survey to ensure representation that reflects all nonprofit, postsecondary institutions. Before sampling occurred, four-year colleges and universities identified as part of the national population were divided into 20 stratification groups based on type (four-year college, university), control (public, private nonsectarian, Roman Catholic, other religious), and selectivity in admissions defined as the median SAT Verbal and Math scores (or ACT composite score) of first-time, first-year students. The methodology for the surveys is described in two reports on nationally normed data by institution type, gender, and rank (Hurtado et al., 2012; DeAngelo et al., 2009).

HERI invited campuses to participate in the faculty survey and provided them with guidelines for survey administration; the survey instrument was then administered via the internet. In cases, where institutional stratification cells were insufficient for drawing conclusions, they supplemented the sample by identifying faculty at those institutions and sending surveys to augment the sample. Funding from the National Institutes of Health and Howard Hughes Medical Institute allowed for a supplemental sample of STEM faculty to participate in the survey. The full national report, survey instrument, and methods are detailed in Appendix A of the publicly released monograph: http://heri.ucla.edu/monographs/HERI-FAC2014-monograph.pdf.

In addition, we conducted an econometric technique known as stochastic frontier analysis to analyze the efficiency with which U.S. colleges and universities produce baccalaureate and doctoral degrees in STEM, inclusive of women and underrepresented minority (URM) groups. The benefits of this technique are that, rather than identifying institutions that are simply doing
better than average (typical in a regression analysis), we identified exemplar institutions (i.e. institutions that are doing much better in producing STEM bachelor's degrees than predicted given their resources) to examine the technologies and efficiencies that exist in the production process. This allows for a comparison of institutions against peers who have similar characteristics (e.g. resources, mission). Having completed this analysis with the support of another funding agency, we proceeded to target the faculty survey to institutions that are exemplars among peers in terms of overall STEM graduate and undergraduate degree production. A second tier of institutions were also targeted, because they indicate promise in improving their degree production. In other words, these campuses would benefit most from benchmarking practices and using the survey to identify areas for faculty development and support. A similar analysis was undertaken to target institutions that are more efficient at producing women, Black, and Latina/o STEM graduates and show promise of diversifying the scientific workforce.

For this report to HHMI, efficiency scores for all institutions were merged with faculty data from participants in the 2013-14 Faculty Survey, resulting in a national sample of 5,956 STEM faculty across 265 institutions. With respect to the faculty demographics of the STEM faculty sampled, 35.0% were full professors, another 26.6% were associate professors, and 25.6% were assistant professors, and 12.9% were adjunct professors. Men were more highly represented in the sample (55.6%) than women (44.4%). Further, 5.4% of the faculty identified as coming from underrepresented racial/ethnic background. With respect to discipline, 4.2\% were in agriculture or forestry, 21.2% in the biological sciences, 9.4% in engineering, 23.8% in a health-related field, 13.7% in mathematics or statistics, 20.2% in the physical sciences, and 7.4% were in a technical-related field.

Notably, of the STEM faculty included in this study, 40% were employed at research universities, 34.3% at master's comprehensive universities, and the final 25.7% employed at liberal arts institutions. Finally 41.3% of faculty surveyed were from public universities. In terms of the 262 institutions that were represented in the survey, a majority were private institutions (67.9%) with the other 32.1% being public. Further, 35.8% of the institutions surveyed were liberal arts institutions, another 44.7% were master's comprehensive universities, and the last 19.5% were research universities. Although institutions ranged in size from as little as 396 students enrolled to many as 53.5 thousand, the average size - as measured by the full-time student equivalent for fall enrollment- was 7,129 students.

Analysis

Several types of analyses were conducted to answer the research questions driving this report. To address research questions one and three, we conducted descriptive statistics to examine if faculty beliefs and practices significantly differed across different types of institutions when survey responses were aggregated. Specifically, institutional comparisons were made between responses from faculty at HHMI institutions and those at non-HHMI institutions. Further, responses from faculty at what we define as high-efficiency institutions were compared to those at medium-efficiency institutions and those at low-efficiency schools. Significance tests were conducted to determine whether the percentage of faculty having a specific response to selected survey items across different types of institutions were significant, taking into account sample size differences.

To address research question two, we examine the interrelationships between scholarly research productivity, teaching (i.e. the use of student-centered pedagogy), and research-teaching
nexus (which measures teaching practices that integrate discipline-based research into the classroom) among STEM faculty members who taught at what we defined as "highly efficient institutions". Faculty working at institutions considered to be "highly efficient" were those who taught at institutions that fell half a standard deviation or more above the mean for STEM efficiency scores among all institutions in our national sample. Structural equation modeling (SEM) allowed for the estimation of the interrelationships among the three latent constructs and the three control variables, accounting for measurement error (Bentler, 2005; Bentler \& Wu, 2002). SEM was useful in that it provided coefficients that estimated the statistical significance and magnitude of the relationships between the three theoretical constructs (i.e., researchteaching nexus, scholarly productivity, and student-centered pedagogy).

Mplus 7.4 was the primary statistical software package used to test the validity of the hypothesized models and illustrates via both numerical output and picture diagrams the interrelationships between the exogenous variables and endogenous constructs. After testing for the non-normality of the data, and determining that the data were within the range of multivariate normality (Boomsma \& Hoogland, 2001; Muthén \& Kaplan, 1985; West et al., 1995), we proceeded to use FIML as the estimator during analysis.

Building the final hypothesized SEM model occurred in a series of steps. First, we tested for the validity of the three latent constructs using confirmatory factor analysis in MPlus. Second, we created a structural model beginning with correlation model between scholarly productivity and student-centered pedagogy to determine the baseline relationship between the two constructs. Next, we developed the structural model with the hypothesized paths (without the controls) to determine the relationships between the three latent constructs and to determine if research-teaching nexus changed the relationship between scholarly productivity and studentcentered teaching. The final SEM model included the three latent constructs and the three control variables.

We used goodness-of -fit indices to determine the adequacy of the SEM models (Laird, Engberg, \& Hurtado, 2005). Several fit indices were used to assess model fit during confirmatory factor analysis and structural equation modeling, which included the comparative fit index (CFI), the root mean square error of approximation (RMSEA), and the standardized root mean square residual (SRMR).

Invariance Tests. We followed Byrne's (2012) sequence of steps for determining whether or not components of the measurement and structural models were invariant (i.e., equivalent) across faculty employed at different institutions (liberal arts, master's comprehensive, and research institutions). In particular, we were interested in determining whether the covariance between scholarly productivity and student-centered pedagogy in our specified SEM model containing controls was equivalent across faculty teaching at different institutional types. In testing for invariance, equality constraints are imposed on particular parameters making it necessary for the data for all groups to be analyzed simultaneously to obtain efficient estimates (Bentler, 2005; Jöreskog \& Sörbom, 1996). The model under test in this multigroup application is the same postulated three-factor structure in the SEM model containing controls that was created for the entire faculty sample. Further it is important to note that we knew a priori that although the originally hypothesized factor structure for each group is similar, it is not identical as faculty employed in different contexts had slightly different baseline models. By implementing a condition of partial measurement invariance, we continued with the multigroup analysis.

Linear regression analysis was also performed in order to determine the faculty demographic characteristics, institutional characteristics, faculty opinions and perceptions, faculty behaviors, and approaches to teaching and goals for student outcomes that are predictive of more frequent use of integrating discipline-based research assignments as a teaching tool in classes (i.e what we term research-teaching nexus).

Variables

For a list of the variables we used in the analyses, please refer to Appendix A. See Appendix B for descriptive statistics (mean, minimum score, maximum score, etc.) of all the variables.

Main Findings

Section 1. Key Features of Faculty at Institutions with High Efficiency in All STEM Degree Productivity and HHMI Institutions

Each of these sections begins to address the corresponding research question (i.e. Question 1). We examined survey responses focusing on institutional differences by comparing national data on HHMI funded institutions (and those that are not funded by HHMI), and institutions with low, medium and high efficiency scores in STEM degree production among undergraduate students. We compared the frequency of individual faculty responses by the comparison groups of interest and tested significance levels, accounting for sample size differences. (See Table 1 for detailed frequencies of each item by institutional group). The following findings were prevalent for all STEM degree recipients: (Corresponding findings for Women, Black and Latina/o efficiency scores are in Section III of this report)

- Faculty at the most efficient STEM producing institutions were significantly more likely to have worked with undergraduates on research, engaged them in their own research projects, and presented at conferences or published with undergraduates.
- \quad Similar to the most efficient STEM degree producers, faculty at HHMI-funded institutions were more likely to have included undergraduates on research in some capacity.
- There were large differences in faculty research productivity: The majority of faculty at high efficiency institutions were more likely to have tangible research outputs (e.g. published articles, chapters) compared with faculty at low and medium efficiency institutions. Similarly, the majority of faculty at HHMI-funded institutions (79.4\%) were productive in terms of publications compared with those at non-HHMI institutions (58.0%) in the last two years.
- Although the majority of STEM faculty use a variety of grading practices, faculty at both the most efficient STEM producers (29\%) and HHMI-funded institutions (34\%) were significantly more likely to grade on a curve in "most" or "all" of their courses compared with low-efficiency and non-funded campuses.
- Traditional teaching practices still prevail among faculty, especially at many highly efficient and HHMI-funded institutions. There were only a few notable exceptions in which a significantly greater proportion of faculty at these institutions engaged in a 'best
practice in teaching' compared to their counterparts at comparison institutions: Giving assignments that require students to employ research methods from their discipline in field and applied settings, and assignments where students deeply engage with a significant challenge or question in their respective discipline.
- In general, low efficiency institutions were more likely to use real-life problems as a method of teaching, utilize rubric-based assessments when assigning grades to students, and believe that all students have the capacity to succeed in their classrooms. Only a quarter of faculty from low efficiency institution use technology that allows students to "learn before lecture" and this was significantly higher than faculty at high efficiency institutions (19\%).

We conclude that faculty at highly efficient STEM institutions engage students in research and are also more likely to be highly productive research scholars. Some of latest innovations in teaching are still not widespread, though it appears that less efficient institutions are more likely to be attentive to teaching and to employ a variety of techniques that may improve their degree production. Slightly different results are reported in section III in examining institutional efficiency in underrepresented groups' STEM degree production.

Specific Findings: All STEM Degree Recipients, Differences by Efficiency Scores

Pedagogical Practices of Faculty. The analysis revealed a number of pedagogical practices that differ among faculty employed at colleges and universities categorized as high, medium, and low efficiency institutions. Indeed, in creating assignments for courses within the last year, there are a number of practices that a greater proportion of faculty at high efficiency institutions did "frequently" compared to their colleagues at low and medium efficiency institutions, and this was expected. For example, a higher proportion of faculty at high efficiency institutions (47.4\%) report "frequently" giving students assignments that require students to deeply engage with a significant challenge or question within their respective discipline compared to faculty at medium efficiency institutions (42.4%, $\mathrm{p}<.05$). Furthermore, more faculty at high efficiency institutions (49.8%) relative to faculty at medium efficiency institutions $(43.8 \%, \mathrm{p}<.01)$ report that assignments "frequently" required students to employ research methods from their discipline in field or applied settings.

However, there were findings that may suggest that faculty are working hard to help improve learning at institutions with lower efficiency scores. For example, a higher proportion of faculty in the low efficiency group (91.3%) report that they "frequently" provide instructions clearly delineating what students are to do to complete an assignment, compared to their counterparts in the high efficiency group ($87.3 \%, \mathrm{p}<.01$). Additionally, more faculty in the low efficiency group (64.4%) reported that they "frequently" explicitly linked assignments with course goals or learning objectives, compared to faculty in the high efficiency group (59.4\%, p < .05). With respect to applying learning from both academic and field settings, faculty at low efficiency institutions (49.4\%) reported "frequently" giving students assignments that required them to engage in this practice compared to their colleagues at high efficiency institutions ($40.7 \%, \mathrm{p}<.01$). Additionally, a greater proportion of faculty at low efficiency institutions (29.7\%) reported that their assignments "frequently" require students to describe how different perspectives could affect the interpretation of a question or issue in their discipline compared to faculty at high efficiency institutions (25.5%, p < .05).

Classroom practices reflect differences in teaching approaches among the low, medium, and high efficiency institutions as well, but also reveal that a majority of faculty stick to traditional teaching practices. Although the majority of faculty are not "grading on curve" in most of their classes, a greater proportion of faculty at high efficiency institutions (29.0%) reported grading on a curve in "most" or "all" of their courses, compared to a lower proportion of faculty at both medium efficiency institutions (24.1%, $\mathrm{p}<.01$) and low efficiency institutions (19.0%, p < .01). Following this trend, a greater percentage of faculty at low efficiency institutions ($58.8 \%, \mathrm{p}<.01$) and medium efficiency institutions (52.1%, $\mathrm{p}<.05$) report employing rubric based assessment for "most" or "all" of their courses, compared to faculty at high efficiency institutions (46.9%). Furthermore, more faculty at low efficiency institutions (73.6%) utilized class discussion for "most" or "all" of their courses, compared to the percentage of faculty at high efficiency institutions (68.0%, $\mathrm{p}<.01$).

Concerning, experiential learning/ field studies, faculty at low efficiency institutions (35.2%) reported engaging in this practice when teaching in "most" or "all" of their courses compared to faculty at high efficiency institutions (29.5%, p < .01). Furthermore, more faculty at low efficiency institutions (41.2%) report that they use performances or demonstrations as a teaching tool in "most" or "all" of their courses, compared to the percentage of faculty at high efficiency institutions (30.0%, p < .01). Faculty at low efficiency institutions also reported higher rates of employing reflective writing or journal in "most" or "all" of their courses (22.1\%), compared to faculty at high efficiency institutions (13.7%, $\mathrm{p}<.01$). Likewise, more faculty at low efficiency institutions ($84.7 \%, \mathrm{p}<.01$) and medium efficiency institutions ($75.0 \%, \mathrm{p}<.01$) reported utilizing real-life problems as a pedagogical tool in "most" or "all" of their courses compared to the percentage of faculty at high efficiency institutions (69.2\%).

Faculty at low efficiency institutions were also more likely to use student inquiry to drive learning in "most" or "all" of their courses (60.6\%) compared to faculty at high efficiency ($49.8 \%, \mathrm{p}<.01$). Moreover, more faculty at the low efficiency institutions (25.6%) employed "learn before lecture" through multimedia tools in "most" or "all" of their courses, compared to faculty at high efficiency institutions ($19.4 \%, \mathrm{p}<.01$). Still it should be noted, that the majority of faculty are not using "learn before lecture" teaching techniques, which are a typical feature of "flipped" classrooms. Concerning techniques to create an inclusive classroom environment for diverse students, faculty at low efficiency institutions (50.0\%) report a higher rate of using this practice in "most" or "all" of their courses, compared to the faculty at high efficiency institutions (40.7%, p < .01). Finally, a higher proportion of faculty at low efficiency institutions (62.9%) "strongly agreed" with the perception that all students in their classes had the potential to excel compared to faculty at "high" efficiency institutions ($55.2 \%, \mathrm{p}<.01$).

Engagement in Undergraduate Research and Research Productivity. Faculty

 interactions with students outside of the classroom also varied across different institutional STEM efficiency groups, particularly with respect to faculty involvement in undergraduate research. A higher proportion of faculty at high efficiency institutions (68.6\%) report that they have engaged undergraduates on their research projects in the past two years, compared to their faculty peers at medium efficiency institutions ($62.9 \%, \mathrm{p}<.01$) and low efficiency institutions (51.8%, $\mathrm{p}<.01$). Similarly, a higher proportion of faculty at high efficiency institutions (76.1%) report that they have worked with undergraduates on a research project in the past two years, compared to faculty at medium efficiency institutions ($71.9 \%, \mathrm{p}<.05$) and low efficiency institutions ($62.2 \%, \mathrm{p}<.01$). It makes sense then that a higher percentage of faculty at lowefficiency institutions (59.6\%) report that they had not presented with undergraduate students at conferences at all in the past two years, compared to faculty at high efficiency institutions ($53.1 \%, \mathrm{p}<.01$). Relatedly, more faculty at low efficiency institutions ($71.4 \%, \mathrm{p}<.01$) and medium efficiency institutions ($66.3 \%, \mathrm{p}<.01$) report that they had "not at all" published with undergraduates in the past two years, compared to faculty at high efficiency institutions (59.2\%). In general, the high efficiency institutions are more likely to conduct research, present at conferences, and publish with undergraduates.

When it came to research productivity, faculty at low and medium efficiency institutions were far less likely to have tangible research outputs compared to faculty at high efficiency institutions in the past two years. Indeed 25.4% of faculty at low efficiency institutions reported no articles published in academic or professional journals in the last two years compared to only 12.0% of faculty at high efficiency institutions ($p<.01$). Further 65.5% ($p<.01$) of faculty at low efficiency institutions and 56.6% ($\mathrm{p}<.01$) of those at medium efficiency institutions had never published a chapter in an edited volume compared with 49.8% of faculty at high efficiency institutions. Finally, 46.0% of faculty at low efficiency institutions (p < .01) and 34.3\% of those at medium efficiency institutions ($p<.01$) reported that none of their professional writings were published or accepted for publication in the past two years, compared with only 27.5% of faculty at high efficiency institutions.

Attitudes and Beliefs of the Institution, Institutional Support, and Stressors.

Concerning faculty members' perceptions of the institution, a greater proportion of faculty at low efficiency institutions ($64.8 \%, \mathrm{p}<.01$) and medium efficiency institutions ($64.9 \%, \mathrm{p}<.01$) "strongly" or "somewhat" agreed that their institution takes responsibility for educating underprepared students, compared to the faculty in high efficiency institutions (58.7\%).

With respect to significant sources of faculty career stress, the saliency of stressors differed for faculty at institutions categorized within different efficiency score groups. For example, 39.0% faculty at high efficiency institutions report that committee work was "not at all" a source of stress in the past two years, compared to only $34.2 \%(p<.05)$ of faculty at low efficiency institutions. Furthermore, more faculty at low efficiency institutions (18.1%) report that their teaching load "extensively " contributed to their stress during the past two years, compared to faculty at high efficiency institutions ($14.2 \%, \mathrm{p}<.05$). Indeed a much greater proportion of faculty at low efficiency institutions teach five or more courses compared to faculty at high efficiency institutions (12% versus $5 \%, \mathrm{p}<.01$). Alternatively a far higher proportion of faculty at high efficiency institutions teach between zero to two courses a term (64.3%) compared to faculty at low ($43.3 \%, \mathrm{p}<.01$) and medium (59.4%, $\mathrm{p}<.05$) efficiency institutions. This may help explain why a greater percentage of faculty at high efficiency institutions reported fewer hours per week preparing for teaching (including reading student papers and grading), compared to faculty at low efficiency institutions.

Departing from the trend above, a greater proportion of faculty at low efficiency institutions (27.5%) report that a lack of personal time was "not at all" a source of stress in their lives in the past two years, compared to faculty at high efficiency institutions (23.1%, $\mathrm{p}<.05$). In a similar vein, a higher percentage of faculty at high efficiency institutions (36.8\%) report that self-imposed high expectations contributed extensively to their stress, compared to faculty at low efficiency institutions (29.0%, p < . 01). Finally, faculty at low efficiency institutions (64.3%) report a higher rate of participating in organized activities around enhancing pedagogy and student learning, compared to faculty at high efficiency institutions (59.1\%, p<.05).

Comparing HHMI and non-HHMI Institutions

Pedagogical Practices of Faculty. The data revealed a number of pedagogical practices that differ among faculty employed at HHMI-funded colleges and universities and their nonHHMI funded counterparts. Indeed, the frequency of giving assignments that required students to engage in a specific practice differed, though in many cases the differences were marginal (at the .05 level). As expected, a higher proportion of faculty at HHMI institutions (48.0\%) reported that they "frequently" require students to engage deeply with a significant challenge or question within their respective discipline on assignments, compared to their colleagues at non-HHMI institutions ($43.3 \%, \mathrm{p}<.05$). The next several findings demonstrate how faculty create assignments that guide learning. For example, a higher proportion of faculty at non-HHMI institutions (88.8%) report that they "frequently" provide instructions clearly delineating what students are to do to complete an assignment, compared to their counterparts at HHMI institutions ($85.7 \%, \mathrm{p}<.05$), but it is important to note that both types engage in this activity at fairly high levels. Continuing with this trend, faculty at non-HHMI colleges and universities report that they "frequently" create assignments that require students to describe how different perspectives would affect the interpretation of a question or issue in their respective discipline at higher rates (28.1%), compared to their peers at HHMI colleges and universities $(24.1 \%$, $\mathrm{p}<$.05). In addition, 45.6% of faculty at non-HHMI institutions report that the assignments they create "frequently" require students to apply learning from both academic and field settings, compared to only 37.6% of faculty at HHMI institutions ($p<.01$).

Classroom practices reflect differences in teaching approaches among the HHMI institutions compared to other institutions. For example, when it comes to giving grades, over a third of faculty at HHMI institutions (34.0\%) report that they grade on a curve in either "most" or "all" of the classes that they teach, compared to one in five faculty at non-HHMI colleges and universities ($20.4 \%, \mathrm{p}<.01$). Alternatively, faculty at non-HHMI colleges and universities (55.5%) are more likely to report that they use rubric-based assessments, in "most" or "all" the classes they teach, compared to faculty at HHMI colleges and universities ($43.0 \%, \mathrm{p}<.01$). Further, the proportion of faculty reporting that they used the following teaching practices in "most" or "all" of their courses was significantly higher at non-HHMI funded institutions compared to HHMI institutions: experiential learning (33.2 versus 27.8%, $\mathrm{p}<.01$); performances or demonstrations (37.1% versus $27.6 \%, \mathrm{p}<.01$); reflective writing and journaling (18.9% versus $11.8 \%, \mathrm{p}<.01$); student inquiry to drive learning (56.5% versus $48.0 \%, \mathrm{p}<.01$); and "learn before lecture" methods through multimedia tools (e.g., flipping the classroom) (23.2% versus 18.9%, $\mathrm{p}<.05$).

Considering the environment for undergraduate students, more faculty at non-HHMI colleges and universities (47.6%) use techniques to create an inclusive classroom environment for diverse students in "most" or "all" of the classes they teach, compared to faculty at HHMI colleges and universities (37.7%, p < 01). Finally, when it came to faculty beliefs about their students, a greater proportion of faculty at non-HHMI colleges and universities (89.8\%) "strongly" or "somewhat" agreed that all of the students in their courses had the potential to excel compared to faculty at HHMI institutions (87.1%, p < .05). However, it is important to note that faculty across both groups of institutions have fairly high levels of belief in student capacity for success.

Engagement in Undergraduate Research and Research Productivity. Faculty

 interactions with students outside of the classroom also varied across different campuses, particularly with respect to faculty involvement in undergraduate research. Concerning research activities with undergraduate students, more faculty at HHMI institutions (81.7\%) report that they have worked with undergraduates on a research project in the past two years, compared to faculty at non-HHMI institutions (64.8%, p < .01). Similarly, more faculty at HHMI-funded institutions engage undergraduates in their own research projects (75.5%) than faculty at nonHHMI colleges and universities (54.9%, p < .01). Among the latter institutions, 60.2% faculty report that they had not presented with undergraduate students at conferences in the past two years, compared to only 50.3% of faculty at HHMI colleges and universities ($\mathrm{p}<.01$). Furthermore, most faculty at non-HHMI colleges and universities (71.2\%) report that they have not published with undergraduates, compared to faculty at HHMI colleges and universities ($52.2 \%, \mathrm{p}<.01$). Thus, similar to the most efficient STEM degree producers, faculty at HHMIfunded institutions are more likely to engage undergraduates in authentic research projects, presentations, and publications.With respect to research outputs, faculty at non-HHMI institutions were far less productive than their colleagues at HHMI funded institutions in the past two years. Indeed faculty at non-HHMI institutions were more likely to report that they had not published any articles in academic or professional journals (71.6%) compared to faculty at HHMI institutions ($52.2 \%, \mathrm{p}<.01$). Faculty at non-HHMI institutions were also far more likely to report that they had not published a chapter in an edited volume (62.3%), compared to their colleagues at HHMI institutions ($44.0 \%, \mathrm{p}<.01$). Finally faculty at non-HHMI institutions were also more likely to report that they had not had any professional writings published or accepted for publication in the past two years, compared to their counterparts at HHMI institutions (42.0% versus 20.6%, p <.01).

Attitudes and Beliefs of the Institution, Institutional Support, and Stressors.

 Comparative analyses revealed several differences in institutional perceptions between faculty at HHMI and non-HHMI institutions, with faculty at non-HHMI institutions perceiving their institutions more favorably. For example, faculty at non-HHMI colleges and universities (64.5\%) more strongly agreed that their institution takes responsibility for educating underprepared students, compared to faculty at HHMI colleges and universities (58.1%, p <.01). Furthermore, faculty at non-HHMI institutions (68.4%) were more likely to report that developing a sense of community among students and faculty was either a "high priority" at their institution or their institution's "highest priority", compared to faculty at HHMI institutions ($61.6 \%, \mathrm{p}<.01$).With respect to the various sources of stress that faculty encounter, more faculty at HHMI colleges and universities (42.0%) reported that committee work was "not at all" a source of stress during the last two years, compared to the faculty at non-HHMI institutions ($35.7 \%, \mathrm{p}<$.01). More faculty at non-HHMI colleges and universities (10.8%) reported that working with underprepared students was an "extensive" source of stress during the last two years, compared to faculty at HHMI colleges and universities ($7.3 \%, \mathrm{p}<.01$). Further, a greater proportion of faculty at non-HHMI colleges and universities (17.2.0\%) reported that their teaching load was an "extensive" source of stress during the last two years, compared to faculty at HHMI colleges and universities ($11.7 \%, \mathrm{p}<.01$). Indeed a greater proportion of faculty at non-HHMI institutions (35.8%) report spending twelve or more hours a week preparing for teaching (including reading student papers and grading), compared to faculty at HHMI institutions (26.7%, $\mathrm{p}<.01$). In a
similar vein, a significantly lower proportion of faculty at non-HHMI teach between zero and two courses during the term for which the faculty survey was taken. Indeed, only 48.2% of faculty at non-HHMI institutions taught up to two classes; in contrast 76.8% ($\mathrm{p}<.01$) of faculty at HHMI institutions taught within that range of classes. In contrast, a greater percentage of faculty at HHMI institutions (38.2%) reported that self-imposed high expectations contributed an "extensive" amount to their stress during the last two years, compared to a lower rate of faulty at non-HHMI colleges and universities (31.6%, $\mathrm{p}<.01$).

As it relates to professional development, more faculty at non-HHMI colleges and universities (64.3%) report that they had participated in organized activities around enhancing pedagogy and student learning as a teaching activity (compared to not doing so), compared to faculty at HHMI institutions (55.1\%, p < .01).

Main Findings

Section II. Understanding the Interrelationship Between Scholarly Productivity and Teaching at Highly Productive STEM Institutions

In order to understand the conditions under which teaching and research may be compatible as postulated by Jones (2013), Elsen et al., (2009) and Anderson et al., (2011), we developed a model to test the relationship between specific types of teaching practices and scholarly productivity. The series of models includes three primary constructs: faculty use of student-centered pedagogy, their scholarly productivity (measured in terms of publications), and their practices that reflect the nexus between research and teaching (R-T Nexus). In addition, we held constant three faculty attributes (current teaching load, sex, and rank). Refer to Table 2 for the parameter estimates of the model.

Below are findings of the analysis of a series of nested models, using structural equation modeling.

- \quad Similar to previous research, simple Model 1 indicated the relationship between Scholarly Productivity and Student-Centered Pedagogy in highly productive institutions is non-significant and negative.
- In Model 2, we found that both highly productive scholars and faculty who used studentcentered pedagogy were significantly more likely to use practices that involved integrating research and teaching (R-T Nexus) in students' classroom assignments. Though these two relationships were highly significant, the relationship between scholarly productivity and student-centered pedagogy remained the same as in Model 1 (non-significant).
- Model 3, tested the same pattern of interrelationships as in Model 2, but included controls for teaching load, sex, and rank. Once these were taken into account, the relationship between scholarly productivity and student-centered pedagogy was positive and significant. The relationships predicting R-T Nexus remained positive and significant. These indicate conditions which have not been tested in previous research.
- Subsequently, Model 3 was tested across different institutional types: Research, Liberal Arts colleges, and Master's' Comprehensive institutions. The main relationships essentially were the same (per the invariance tests), though the characteristics of faculty
(control variables) worked differently in terms of relationships with the constructs depending on the type of college. (For more details see findings section below).
- Finally, we predicted the characteristics of faculty that used R-T nexus practices more frequently (Table 3). Confirming previous analysis with additional controls, we found that that some of the strongest predictors were faculty that used student-centered pedagogy, provided feedback on drafts that were still in progress, helped students accept mistakes as part of the learning process, explicitly linked assignments with course goals and learning objectives, and used techniques to create an inclusive classroom. Faculty in the health sciences and biological sciences were more likely than faculty in the physical sciences, engineering, or mathematics to employ R-T nexus; there were no differences with respect to faculty rank, with the exception of non-tenure track faculty who are the least likely to utilize R-T nexus. Scholarly productivity was significant but not as strong a predictor as some of these other factors.

We conclude that faculty can be both productive scholars and engaged in active learning or student-centered pedagogy. Institutions that are highly efficient in producing STEM degrees are more likely to have highly productive scholars who also use student-centered pedagogy, and use practices that combine research and teaching, when faculty characteristics are held equal (holding constant faculty sex, rank, and teaching load). The use of teaching practices and research outputs of faculty (the three constructs) can differ by faculty characteristics, and so it is important to take such demographic factors into account. Finally, the use of research in teaching is associated with a host of other practices that include students as developing scientists.

Specific Details and Findings

Jones (2013) posited a framework for re-conceptualizing the link between research and teaching, and we were able to operationalize the introduction of research methods in the classroom. In order to investigate potential areas for synergy and retest the key set of relationships between scholarly productivity and teaching, we developed a measure of how faculty integrate knowledge production with knowledge dissemination in the classroom, or the nexus of research and teaching in practice. Research-teaching nexus it is a five-item latent factor comprised of STEM faculty responses to the question, "how frequently in the courses you taught in the past year have you given at least one assignment that required students to..." The five items included in this factor include: "engage deeply with a significant challenge or question within your discipline," "use research methods from your discipline in field or applied settings," "apply learning from both academic and field settings," "describe how different perspectives would affect the interpretation of a question or issue in your discipline," and "weigh the meaning and significance of evidence." Participants could choose one of three response options for each item: "not at all," "occasionally," or "frequently." A higher score on research-teaching nexus indicates that the faculty member more frequently used discipline-based research assignments as a teaching tool in their classes. This became the dependent variable in the SEM model.

Scholarly productivity is indicated by three items (i.e. number of published articles in academic and professional journals, number of published chapters in edited volumes, and number of professional writings published or accepted for publication in the last two years). A higher score on scholarly productivity therefore indicates that the faculty member was more productive in terms of research outputs.

In examining the extent to which faculty utilized student-centered pedagogical practices within their classrooms, faculty indicated the proportion of courses they taught that they used each of the following practices: class discussions; cooperative learning (small groups); experiential learning/field studies; group projects; student-selected topics for course content; reflective writing/journaling; student inquiry to drive learning; real-life problems; and performances/demonstrations. Faculty had the option of selecting "none," "some," "most," or "all" as responses to each item. Thus a higher score on student-centered pedagogy therefore indicated that the faculty member used these instructional methods in a greater number of their classes.

Sample. The total sample in the "high efficiency" group included 1,825 faculty across 75 "highly productive" institutions. Within this unique sample of faculty, 5.4% identified as being from an underrepresented racial/ethnic minority background and 44.4% were women. Further 35% were full professors, 26.6% were associate professors, 25.6% were assistant professors, and the remaining 12.9% were non-tenure track faculty like instructors and lecturers. With respect to discipline, 23.8% were in a department related to the professional health sciences, 21.2% were in the biological sciences, 20.2% in the physical sciences, 9.4% were in engineering, 4.2% of the faculty were from an agriculture or forestry related department, and the remaining 7.4% were in a department we defined as "other technical." All findings are reported using the unstandardized coefficients.

The simple relationship between scholarly productivity and student-centered teaching practices. The first of the analysis (Model 1) involved determining the baseline relationship between scholarly productivity and student-centered teaching practices using the sample of faculty that taught at what we defined as "highly efficient institutions." Findings show that the relationship between the two constructs was initially negative $(\beta=-0.040$, S.E. $=0.031, p=$ 0.192), but non-significant. In other words, without controlling for faculty characteristics, there is a zero relationship between scholarly productivity and use of student-centered pedagogy - the number of publications faculty completed in the last two years has no relationship to their use student-centered teaching practices in the classroom, which is a finding similar to that concluded by Hattie and Marsh (1996).

Adding research-teaching nexus to the model. The next step (Model 2) involved putting the three latent constructs into a model (without the controls) to determine whether R - T Nexus practices are associated to Scholarly Productivity and Student-Centered Pedagogy. We hypothesized that faculty who more often use student-centered pedagogy, would be more likely to utilize R-T nexus practices in their classes, so we specified a path from student-centered pedagogy predicting use of research-teaching nexus practices. Similarly, we hypothesized that those who are more productive when it comes to scholarly output, are more likely to infuse activities that involve research in class assignments as a mode of teaching, so we specified a path from scholarly productivity predicting use of R-T nexus practices. Since the directional relationship between scholarly productivity and student-centered pedagogy remains unclear, we specified a correlation between the two constructs. This correlation was of primary interest, specifically how it compares to the results in Model 1.

The latter relationship between student-centered teaching practices and scholarly productivity remained negative $(\beta=-0.035$, S.E. $=.030, \mathrm{p}=.246$), but non-significant. The path from scholarly productivity to $R-T$ nexus was positive $(\beta=0.234$, S.E. $=.032, \mathrm{p}=.000)$ and highly significant. Similarly, the path from student centered pedagogy to R-T nexus was positive $(\beta=1.091$, S.E. $=.059, p=.000)$ and also highly significant. In other words, faculty use $R-T$
nexus more often in their classrooms, when they are more productive in terms of research publication outputs and when they use student centered pedagogy in a greater number of the classes they teach.

Adding the control variables to the model. In the final round of model building (Model 3), we added the three control variables - sex, faculty rank, and number of courses being taught the term the survey was taken - to the SEM model to determine if the introduction of controls better accounted for the relationships between the use of student centered-pedagogy, use of research-teaching nexus, and scholarly productivity. Of particular interest were the relationships between the three latent factors. As hypothesized, both scholarly productivity ($\beta=$ 0.162 , S.E. $=.033, \mathrm{p}=.000$) and student-centered pedagogy $(\beta=1.049$, S.E. $=.057, \mathrm{p}=.000)$ are significant positive predictors of the frequency of faculty's use class assignments that incorporate R-T Nexus. Further, there was a significant relationship between scholarly productivity and the utilization of student-centered pedagogy. Most importantly, we recorded a change wherein the relationship went from being non-significant in Model2, to becoming significantly positive $(\beta=.098$, S.E. $=.032, \mathrm{p}=0.002)$ in Model 3 , which included controls. This indicates that relationships observed in previous research may have much to do with previous constructs in the model (i.e. the survey items they used as proxies to measure the constructs of interest) and the absence of appropriate controls for teaching load, sex and rank. Moreover, institutions that are highly efficient in producing STEM degrees are more likely to have highly productive scholars that also use student-centered pedagogy when they teach, and these faculty are more likely to use practices that combine research and teaching, when faculty characteristics are held equal (holding constant sex, rank, and teaching load).

Findings across institutional types. One of the goals of this study is to determine whether the relationship between scholarly productivity and student-centered teaching varies across institutional type (i.e. liberal arts institutions, master's comprehensive institutions, and research institutions). Invariance testing revealed that the relationships between the three constructs worked in a similar way when comparing institutions of different types. The three variables for which we controlled (i.e. sex, academic rank, and number of courses they taught), however, worked a bit differently depending on the institutional type. (See Table 2 for the parameter estimates of this model).

Teaching a higher number of courses during an academic term is positively and significantly related to research-teaching nexus practices at liberal arts institutions ($\beta=.115$, S.E. $=.043, \mathrm{p}=.007$) and research institutions ($\beta=.108$, S.E. $=.032, \mathrm{p}=.001$), but has no effect at master's comprehensive institutions ($\beta=.029$, S.E. $=.044, \mathrm{p}=.518$). In layman's terms, faculty at liberal arts institutions and research institutions more frequently integrate inquiry-based research activities within the scope of the classroom setting when they teach more classes.

Although the sex of faculty does not matter within master's comprehensive institutions (β $=.011$, S.E. $=.130, \mathrm{p}=.933$) and liberal arts institutions $(\beta=.185$, S.E. $=.106, \mathrm{p}=.081)$ when it comes to the use of R-T nexus in teaching, it does matter at research institutions ($\beta=.206$, S.E. $=$ $.085, \mathrm{p}=.015$). At research institutions, women more frequently report using assignments that infuse research-teaching nexus practices than their male counterparts. Interestingly, the findings suggest no significant differences between a faculty member's rank and their use of researchteaching nexus in the classroom at liberal arts institutions ($\beta=.033$, S.E. $=.050, p=.503$); in other words, junior faculty (i.e. assistant professors) use research-teaching nexus practices as much as senior faculty (i.e. associate professors and full professors) at liberal arts institutions. This is not the case at Master's comprehensive institutions ($\beta=.098$, S.E. $=.055, \mathrm{p}=.075$) and
research institutions ($\beta=.121$, S.E. $=.041, \mathrm{p}=.003$), with more senior faculty (full professors and associate professors) using R-T nexus more frequently in their classrooms than lecturers and junior faculty.

With respect to student-centered teaching practices, findings show that at research institutions, instructors/lecturers and more junior faculty have a higher propensity of adopting practices in their classes that are known to engage students in the learning process compared to their more senior colleagues ($\beta=-.095$, S.E. $=.031, \mathrm{p}=.002$). Academic rank does not appear to have a significant effect on the use of student-centered pedagogy at liberal arts institutions (β $=.010$, S.E. $=.047, p=.829$) or master's comprehensive institutions $(\beta=-.088$, S.E. $=.048, p=$.068). Likewise, the number of courses faculty teach during a term positively and significantly predicts the use of student-centered pedagogy in the classroom, but only at research institutions ($\beta=.093$, S.E. $=.029, p=.002$). In other words, the more courses a faculty teaches over the course of a term, the more they infuse student-centered pedagogy in the classes they teach. At liberal arts institutions ($\beta=.051$, S.E. $=.042, p=.219$) and master's comprehensive institutions ($\beta=.028$, S.E. $=.042, p=.505$), the number of courses taught has no bearing on the use of student- centered teaching. Finally, female faculty use student-centered pedagogy in a greater number of their classes than their male counterparts across all three types of institutional context (liberal arts institutions: $\beta=.525$, S.E. $=.103, p=.000$) (master's comprehensive institutions: β $=.524$, S.E. $=.121, p=.000$) (research institutions: $\beta=.388$, S.E. $=.078, p=.000$).

With respect to scholarly productivity, more senior faculty (i.e. full professors and associate professors) have a greater tendency to be drivers of scholarly productivity irrespective of institutional type (liberal arts institutions: $\beta=.369$, S.E. $=.051, p=.000$) (master's comprehensive institutions: $\beta=.432$, S.E. $=.052, \mathrm{p}=.000$) (research institutions: $\beta=.713$, S.E. $=.036, \mathrm{p}=.000$). It makes sense that full professors would have produced more scholarship than assistant professors and lecturers, because full professors would have likely been in academia longer and assembled research teams to be highly productive. Interestingly the number of courses taught during a given term has no effect on faculty research productivity, but only at master's comprehensive institutions ($\beta=-.045$, S.E. $=.043, \mathrm{p}=.291$) and liberal arts institutions ($\beta=-.035$, S.E. $=.044, \mathrm{p}=.429$). Echoing other research (Fairweather \& Beach, 2002), the number of courses taught during a given term negatively impacts scholarly productively, but only at research institutions ($\beta=-.172$, S.E. $=.030, p=.000$). Indeed, time and energy exerted towards carrying a heavier course load must affect the time and energy available to conduct research. Confirming previous studies (Sax et al,. 2002), women tend to have lower levels of scholarly productivity compared to their male counterparts over the last two years, at all three institutional types (liberal arts institutions: $\beta=-.241$, S.E. $=.110, \mathrm{p}=.028$) (master's comprehensive institutions: $\beta=-.464$, S.E. $=.124, p=.000$) (research institutions: $\beta=-.335$, S.E. $=.079, \mathrm{p}=.000$).

The Characteristics of Faculty Who Use R-T Nexus. Another point we sought to examine, were the predictors of faculty tendency to use research-infused assignments as a teaching tool (what we term research-teaching nexus.) Previous literature and theory guided our selection of variables for a regression model predicting use of R-T Nexus. (See Table 3. for a complete list of variables within the regression model and the corresponding variable coefficients and significance levels.) Of the items capturing a variety of faculty demographic characteristics, nontenure track faculty members had a tendency to less frequently use assignments that infuse research into their teaching than their colleagues who were full professors; in contrast, assistant
professors and associate professors used research-teaching nexus just as frequently as full professors. Further teaching a greater number of courses was associated with more frequent use of R-T Nexus. With respect to department, faculty from agriculture or forestry, engineering, mathematics/statics, the physical sciences, and other technical departments less frequently used research-infused assignments as a teaching tool (compared to faculty in the biological sciences). Only faculty in health-related departments more frequently used R-T Nexus in their assignments (compared to faculty in the biological sciences).

Only one institutional characteristic mattered in the frequency with which faculty used research-teaching nexus: the control of the institution, with faculty at private institutions having the tendency to use R-T Nexus less frequently than those at public institutions.

With respect to faculty opinions and perceptions, greater agreement with the statement, "all students have the potential to excel in my courses," was associated with more frequent use of R-T Nexus. Further, faculty have a tendency to more frequently use R-T nexus practices in their teaching, when they apply to internal grants for research, engage students in research to a greater extent, produce more research publications, and spend a greater number of hours per week preparing for teaching (including reading student papers and grading).

Finally with respect to pedagogical practices, the following variables are associated with a tendency to more frequent use R-T Nexus in one's classroom: using student-centered pedagogy in a greater proportion of the classes one teaches; using learn-before-lecture through multimedia tools (e.g., flipping the classroom) in a greater proportion of the courses that one teaches; using techniques to create an inclusive classroom environment for diverse students in a greater proportion of the courses that one teaches; more frequently providing feedback on drafts or work still in progress; more frequently explicitly linking the assignment with course goals or learning objectives; more frequently provide instructions clearly delineating what students are to do to complete an assignment; to a greater extent structuring courses so that students master a conceptual understanding of course content; more frequently encouraging undergraduates to accept mistakes as part of the learning process; and placing a greater importance on helping students evaluate the quality and reliability of information.

Main Findings

Section III. Understanding Features of Institutions with Relatively Higher STEM Degree Productivity for Women, African American, and Latina/os

According to the higher education literature, there are several faculty and institutional practices that seem to matter in helping students learn and graduate from college in a STEM discipline. We replicated the analysis of Section I, this time using institutional efficiency scores for degree recipients in STEM who were female, Latino, and African American. Findings are then organized by thematic heading similar to Section I. Key findings highlight important differences that indicate that institutions that are more productive with underrepresented groups in STEM do not always have the same faculty practices, beliefs, and behaviors. Refer to Tables 4,5 , and 6 to see the frequency breakdowns of each variable item grouped by low, medium, and high efficiency institutions. The most important findings from Tables 4, 5, and 6 are summarized here:

- \quad Some unique findings were evident among faculty at high efficiency institutions for women STEM degrees in the following pedagogical techniques: Asking students to apply learning from both academic and field settings, describe how different perspectives would affect the interpretation of a question, and weight the meaning and significance of evidence. Faculty at these institutions indicated that they also try to dispel perceptions of competition. There were no differences across efficiency score campuses for women STEM degrees in the use of "grading on a curve" among faculty (close to one quarter use this technique in most or all of their classes).
- It is notable that those faculty at institutions with medium STEM efficiency scores for women were significantly more likely than those at high efficiency scores to engage undergraduates in their own research and work with undergraduates on a research project. Yet, faculty at high efficiency institutions for women were more productive scholars.
- There were distinctive findings for institutions that were highly efficient in producing Latina/o STEM degree recipients compared to institutions highly efficient with all STEM students. Specifically, faculty at highly efficient institutions for Latino students were more likely to frequently link assignments with course goals in an explicit manner, more likely to use class discussions, and somewhat more likely to use student-selected topics in class (compared to their low and medium efficient institutional counterparts). Those highly efficient in Latina/o STEM producers were also more likely to engage undergraduates in research and were productive scholars. Alternatively, those faculty at low efficiency institutions were more likely to state that their institution took on the responsibility of working with underprepared students, but also reported more stress from teaching loads than those at highly efficient institutions. Institutions that were highly efficient with Latino students also shared some common results with those institutions that were highly efficient at producing STEM degrees among the total undergraduate population (irrespective of race or gender) in Section 1. Similar findings include "grading on a curve", engaging deeply in a challenge within the discipline, and using research methods of the discipline.
- Institutions highly efficient in producing African American STEM degrees have several unique features. Faculty at these institutions are more likely to provide instructions to clearly delineate what students are to do to complete assignments and explicitly link assignments with course goals. They are more likely to ask students to describe how different perspectives affect interpretation of a question in the discipline and use reflective journal writing, and are significantly more likely to report using rubric-based assessment in most or all of their classes (58.3\%). It is surprising to note, however, that fewer faculty work with undergraduates in research at the highly efficient institutions compared with faculty at medium and low efficiency institutions. This finding may indicate areas for greater investment since exposure to research is essential during the undergraduate years.

We identified some areas that replicate the trends demonstrated when considering all the efficiency of institutions producing degrees among all STEM students, but also begin to suggest unique features associated with URM degree production. Clearly the faculty in the low efficiency group appear to be dealing with higher teaching loads and are responsible for educating underprepared students. On a positive note, faculty at highly efficient institutions in URM degree production also demonstrate a wider repertoire of teaching practices.

Specific Findings: STEM Efficiency Scores for Female Undergraduate Students

Pedagogical Practices of Faculty. The analysis revealed a number of pedagogical practices that differ among faculty teaching at colleges and universities categorized as high, medium, and low efficiency institutions. (See Table 4.) Indeed in creating assignments for courses within the last year, there are a number of practices that a greater proportion of faculty at high efficiency institutions did "frequently" compared to their colleagues at low efficiency institutions. (Faculty at medium efficiency institutions were similar to faculty at high efficiency institutions when it came to the nature of assignments). For instance, faculty at high efficiency institutions were more likely to report that they "frequently" provide instructions clearly delineating what students are to do to complete an assignment (89.1\%) compared to their counterparts at low efficiency institutions (85.8%, p < .05). Faculty members at high efficiency institutions were also more likely to report that they "frequently" give at least one assignment that requires students to engage deeply with a significant challenge or question within their respective STEM discipline (47.1%) compared to their counterparts at low efficiency institutions $(41.3 \%, \mathrm{p}<.05)$. Continuing the trend, faculty members at high efficiency institutions were more likely to report that they "frequently" gave at least one assignment that required students to write in the specific style or format of their respective discipline (56.7%) compared to faculty at low efficiency institutions (51.5%, p < .05).

Faculty members at high efficiency institutions were additionally more likely to report that in the courses they taught, they "frequently" gave assignments that required students to use research methods from their respective discipline in field or applied settings (50.3%) compared to their counterparts at low efficiency institutions ($43.3 \%, \mathrm{p}<.01$). Not surprisingly, compared to faculty at low efficiency institutions, faculty members at high efficiency institutions were more likely to report that they "frequently" gave at least one assignment that required students: to apply learning from both academic and field settings (39.7% versus 46.5%, p < . 01); to describe how different perspectives would affect the interpretations of a question or issue in their discipline (24% versus $30 \%, \mathrm{p}<.01$); and to weigh the meaning and significance of evidence (53\% versus 60\%, p < .01).

Classroom practices reflect differences in teaching approaches among the low, medium, and high efficiency institutions as well. Faculty members at low efficiency institutions were less likely to report that they used student presentations in "most" or "all" of the courses they taught (42%) compared to their counterparts at high efficiency institutions (47.8%, $\mathrm{p}<.05$). Interestingly, faculty members at medium efficiency institutions were more likely to report that they used performances and/or demonstrations in "most" or "all" of the courses they taught (36.3%) compared to their counterparts at high efficiency institutions (31.9%, $\mathrm{p}<.05$). Regarding faculty efforts to dispel perceptions of competition in the classroom, a greater proportion of faculty members at high efficiency institutions report that they agreed "somewhat" or "strongly" that they tried to do so (78.1%), compared to their counterparts at low efficiency institutions ($71.7 \%, \mathrm{p}<.01$).

Engagement in Undergraduate Research and Research Productivity. Faculty interactions with students outside of the classroom also varied across different institutional efficiency groups, particularly with respect to faculty involvement in undergraduate research. For instance, faculty at medium efficiency institutions (64.9\%) report that they engage
undergraduates on their research project (versus not doing so) in greater proportions than their colleagues at high efficiency groups (59.9\%, p < .05). Likewise, faculty in the medium (73.5\%) efficiency institutional group work with undergraduates on a research projects (versus not doing so) at higher rates compared to faculty in the high efficiency group (67.5%, $\mathrm{p}<.01$). As expected given the previous two findings, faculty in the high efficiency group in greater proportions report that they had not presented with undergraduate students at conferences in the last two years (59.5%), compared to colleagues in the medium efficiency group (53.6%, p $<.05$). Thus, it is not a surprise that more faculty in the medium group (11.5\%) report that they publish with their undergraduates to "a great extent" compared to faculty in the high efficiency group $(8.3 \%, \mathrm{p}<$.05). However, in general most faculty in both the medium (61.1\%) and high (66.5\%) groups do not publish with their undergraduate students at all.

With respect to research productivity, faculty at low efficiency institutions (61\%) are more likely to report that they had never published a single chapter in an edited volumes compared to their colleagues in the high efficiency group ($52.4 \%, \mathrm{p}<.01$). Lastly, a much higher proportion of faculty at low efficiency institutions report that none of their professional writings had been published or accepted for publication within the past two years (41.1%), compared to their counterparts in the high efficiency group (32.9%, $\mathrm{p}<.01$).

Attitudes and Beliefs of the Institution, Institutional Support, and Stressors. Faculty at low efficiency institutions were more likely to agree "somewhat" or "strongly" (66.7 \%) compared high efficiency institutions ($59.3 \%, \mathrm{p}<.01$) that their institution took responsibility for educating underprepared students. Faculty at medium efficiency institutions are more likely to report that they agree "somewhat" or "strongly" that there is adequate support at their institution for faculty development (69.8 percent) compared to faculty at high efficiency institutions (57.4 percent, $\mathrm{p}<.01$).

Our analysis also shows differences in faculty's perceptions of their respective institutions across the efficiency groups with respect to graduating female STEM undergraduate students. Curiously, a greater proportion of faculty in the medium efficiency group "strongly" or "somewhat" agree that there is adequate support for faculty development at their institution of employment (69.8%), compared to their colleagues in the high efficiency group ($57.4 \%, \mathrm{p}<.01$). Furthermore, faculty in the medium efficiency group report that they have taken advantage of internal grants for research within the past two years at greater rates (41.3\%) compared to their counterparts in high efficiency institutions (32.0%, p < .01). Only one work-related stressor manifested differently for faculty across the different institutional efficiency groupings; indeed, faculty at highly efficient institutions (36.8%) are more likely to report that working with underprepared students was not a source of stress in the past two years, compared to their counterparts in the low efficiency group ($31.9 \%, \mathrm{p}<.05$). Notably a much greater proportion of faculty at high efficiency institutions teach only between zero to two courses a term (60.5%), compared to faculty at low efficiency institutions (49.8%, $\mathrm{p}<.01$). Relatedly, a greater proportion of faculty at high efficiency institutions (18.2%) tend to spend between zero and four hours a week preparing for teaching (including reading student papers and grading) compared to faculty at low ($20.0 \%, \mathrm{p}<.05$) and medium efficiency institutions ($19.2 \%, \mathrm{p}<.01$). These findings were similar to those presented in Section I for the All STEM efficiency score groups.

Specific Findings: STEM Efficiency Scores for Latino Undergraduate Students

Pedagogical Practices of Faculty. The analysis revealed a number of pedagogical practices that differ among faculty employed at colleges and universities categorized as high, medium, and low efficiency institutions. (See Table 5.)Indeed in creating assignments for courses within the last year, there are a number of practices that a greater proportion of faculty at high efficiency institutions did "frequently" compared to their colleagues at low and medium efficiency institutions. For example, faculty at high efficiency institutions reported that they "frequently" linked in an explicit manner assignments with course goals or learning objectives (64.5%) compared to faculty at low efficiency institutions ($58.7 \%, \mathrm{p}<.01$). The data also show that faculty at high efficiency institutions were much more likely to report that they "frequently" gave at least one assignment that required students to engage deeply with a significant challenge or question within their discipline (48.8%), compared to faculty at low efficiency institutions (40.9\%, p < .01).

Further, faculty at high efficiency institutions were most likely to report "frequently" giving assignments that required students to use research methods from their respective discipline in field or applied settings (50.3%) compared to their counterparts at medium efficiency institutions ($44.4 \%, \mathrm{p}<.05$) and faculty members at low efficiency institutions (43.9%, p $<.01$). Compared to faculty at high efficiency institutions (46.3%), those at medium efficiency institutions were less likely to report that they "frequently" gave assignments that required students to apply learning from both academic and field settings (41.4%, $\mathrm{p}<.05$).

Classroom practices reflect differences in teaching approaches among the low, medium, and high efficiency institutions as well. Faculty at high efficiency institutions (72.5%) were more likely to report using class discussions in "most" or "all" of the classes they taught compared to faculty members at low efficiency institutions (66.3%, p < . 01). Faculty members at high efficiency institutions were more likely to report (20.3\%) using student-selected topics for course content in "most" or "all" the courses compared to faculty at low efficiency institutions (16%, p <.05). Faculty members at high efficiency institutions were also more likely to report that they graded on a curve for "all" or "most" of the courses they taught (28.3\%) compared to their counterparts at low efficiency institutions $(21.3 \%, \mathrm{p}<.01)$. The latter is similar to the findings regarding all STEM efficiency scores (irrespective of students' race and gender).

Engagement in Undergraduate Research and Research Productivity. Faculty

 interactions with students outside of the classroom also varied across different institutional efficiency groups, particularly with respect to faculty involvement in undergraduate research. Faculty members at high efficiency institutions were significantly more likely to report that they engaged undergraduates on their research projects (65.7%), compared to faculty members at low efficiency institutions ($55 \%, \mathrm{p}<.01$). Further, faculty members at high efficiency institutions were more likely to report working with undergraduates on a research project (72.1%), compared to their counterparts at low efficiency institutions ($67 \%, \mathrm{p}<.05$). Given the previous two findings, it is not surprising that a greater proportion of faculty at low efficiency institutions report that they never had published with undergraduates (72.7%) compared to faculty at high efficiency institutions (59.7%, p < .01).With respect to research productivity, faculty at low efficiency institutions were far more likely to report that they had not published any articles in academic or professional journals ($21 \%, \mathrm{p}<.01$) compared to faculty at high efficiency institutions (13\%). Faculty at low (61.6\%, $\mathrm{p}<.01$) and medium ($60.6 \%, \mathrm{p}<.01$) efficiency institutions were also far more likely to report that they had not published a chapter in an edited volume, compared to their colleagues at high
efficiency institutions (49.4\%). Finally faculty at low ($42.3 \%, \mathrm{p}<.01$) and medium (36.2 \%, p < .01) efficiency institutions were also more likely to report that they had not had any professional writing published or accepted for publication in the past two years, compared to their counterparts at high efficiency institutions (28.1%). Again, this pattern is consistent with the findings for degree production for All STEM groups.

Attitudes and Beliefs of the Institution, Institutional Support, and Stressors.
Turning to faculty attitudes and beliefs, faculty members at low efficiency institutions were more likely to report that they agreed "somewhat" or "strongly" that their institution takes responsibility for educating underprepared students (65.5\%) compared to faculty at high efficiency institutions ($61 \%, \mathrm{p}<.05$). Similarly faculty members at low ($67.1 \%, \mathrm{p}<.05$) and medium ($69.9 \%, \mathrm{p}<.01$) efficiency institutions reported in greater proportions that they believed developing a sense of community among students and faculty was a "high priority" or the "highest priority" at their institution, compared to high efficiency institutions (62.1\%).

Finally, faculty reported various sources of career stress within the past two years. As expected, a greater proportion of faculty members at low efficiency institutions reported that their teaching load was an "extensive" source of stress (17\%) compared to faculty members at high efficiency institutions ($13.7 \%, \mathrm{p}<.05$). Indeed a much greater proportion of faculty at high efficiency institutions teach only between zero to two courses a term (63.6%) compared to faculty at low (50.0%), $\mathrm{p}<.01$) and medium ($56.1 \%, \mathrm{p}<.01$) efficiency institutions. In a similar vein, a higher proportion of faculty at high efficiency institutions (25.4%) spend zero to four hours a week preparing for teaching (including reading student papers and grading) compared to faculty at both low ($19.3 \%, \mathrm{p}<.01$) and medium ($17.5 \%, \mathrm{p}<.01$) efficiency institutions. Relatedly, faculty members at high efficiency institutions are most likely to report that they are "not at all" stressed from working with underprepared students (40.3\%), compared to faculty at medium efficiency institutions ($34.8 \%, \mathrm{p}<.05$) and those at low efficiency institutions (31.7%, $\mathrm{p}<.01$).

STEM Efficiency Scores for Black Undergraduate Students

Pedagogical Practices of Faculty. The analysis revealed a number of pedagogical practices that differ among faculty employed at colleges and universities categorized as high, medium, and low efficiency institutions. (See Table 6.) Indeed in creating assignments for courses within the last year, there are a number of practices that a greater proportion of faculty at high efficiency institutions did "frequently" compared to their colleagues at low and medium efficiency institutions. For instance, a greater proportion of faculty at high efficiency institutions report that they "frequently" provide instructions clearly delineating what students are to do to complete the assignment (89.8%), compared to their counterparts in the medium efficiency group (86.6%, p < .05). Similarly more faculty in the high efficiency group report that they "frequently" explicitly link the assignment with course goals or learning objectives (63.5\%) compared to faculty in the medium efficiency group (56.8%, p < .01). Further, a higher proportion of faculty in the high efficiency group reported that they "frequently" gave at least one assignment that required students to engage deeply with a significant challenge or question within their discipline (47.3\%), compared to their colleagues in the medium efficiency group (42.0\%, p < .05).

Following this trend, a lower proportion of faculty in the low (40.8\%, p < .01) and medium ($39.3 \%, \mathrm{p}<.01$) efficiency groups report that they "frequently" provide assignments that require students to apply learning from both academic and field settings, compared to their counterparts in the high efficiency group (50.0%). A higher percentage of faculty in the high efficiency group (31.1%) also report that they "frequently" assign activities that require students to consider how different perspectives would affect the interpretation of a question or issue in their discipline, compared to faculty in the low ($25.7 \%, \mathrm{p}<.05$) and medium ($24.2 \%, \mathrm{p}<.01$) groups.

Classroom practices reflect differences in teaching approaches among the low, medium, and high efficiency institutions as well. A greater proportion of faculty at institutions in the high efficiency group report that they use reflective journaling/writing in "all" or "most" of the classes that they teach (19.7%), compared to faculty in the medium group (14.9%, p < .05). With respect to evaluating students' performance, a higher proportion of faculty in the high efficiency group report that they utilize rubric-based grading on all or most of the assignments they give to students (58.3%) compared to their colleagues in the low ($48.2 \%, \mathrm{p}<.01$) and medium groups (50.5\%, p < .01).

Engagement in Undergraduate Research and Research Productivity. Faculty

 interactions with students outside of the classroom also varied across different institutional efficiency groups, particularly with respect to faculty involvement in undergraduate research. Curiously, a greater proportion of faculty in the low efficiency ($67.1 \%, \mathrm{p}<.01$) and medium efficiency groups ($60.8 \%, \mathrm{p}<.05$) report that they engage undergraduates on their research project than their colleagues in the high efficiency group (55.8\%). Similarly, a greater percentage of faculty in the low ($75.4 \%, \mathrm{p}<.01$) and medium efficiency groups $(72.0 \%, \mathrm{p}<.01)$ report that they work with undergraduates on a research project than faculty in the high efficiency group (63.5\%).Given the previous two findings regarding research with undergraduates, it was not surprising to find that a greater proportion of faculty in the high efficiency group (61.2\%) report that they never had presented with undergraduate students at conferences, compared to colleagues in the low (52.2%, p < .01) and medium groups (56.0%, p < .05). Similarly, a greater proportion of faculty in the high efficiency group never had published with undergraduate students (72.1%) compared to faculty in the low (58.8%, $\mathrm{p}<.01$) and medium groups (65.9%, p $<.01$). This pattern is counter to the pattern in other groups where high efficiency institutions conduct more research with undergraduates.

When it came to research productivity, a greater proportion of faculty at medium efficiency institutions $(60.7 \%, \mathrm{p}<.05)$ reported that they had not published any chapters in an edited volume compared to their colleagues in the high group (55.7%). There were no other significant differences in research productivity across the efficiency comparison groups.

Attitudes and Beliefs of the Institution, Institutional Support, and Stressors. With respect to institutional support, more faculty in the low efficiency group agree "strongly" or "somewhat" that there is adequate support for faculty development at their college or university $(67.1 \%, \mathrm{p}<.01$), compared to 59.6% of faculty in high efficiency institutions. Furthermore, a higher proportion of faculty in the low efficiency group (41.0%, $\mathrm{p}<.01$) reported that they indeed took advantage of internal grants aimed to support professional development within the past two years, compared to their counterparts in the high group (31.5\%). Lastly, working with
underprepared students didn't seem to be as much of a stressor to faculty at low efficiency institutions with 40.1% reporting that such students were never a source of stress, compared 33.4% of faculty at high efficiency schools ($\mathrm{p}<.01$). Notably a much greater proportion of faculty at low efficiency institutions teach only between zero to two courses a term (60.2%) compared to faculty at high efficiency institutions (54.9\%, p <.05). Relatedly, a greater proportion of faculty at high efficiency institutions tend to spend between zero and four hours a week preparing for teaching (including reading student papers and grading) compared to faculty at medium efficiency institutions (23.2% versus 18.2%, $\mathrm{p}<.05$).

Concluding Discussion

This set of studies begins to unpack the link between research and teaching with additional complexity. Instead of teaching and research being at odds, this research shows that they can work in unison to elevate both the research production and engaged teaching of faculty. These findings support previous work wherein faculty who more frequently use student-centered teaching practices were also the same people to more frequently engage undergraduate students in research (Elsen et al., 2009). Our findings contrast with the work of other scholars that found no relationship between scholarly productivity and the frequency with which an instructor uses student-centered pedagogy (Braxton, 1996; Feldman, 1987; Milem, Berger, \& Dey, 2000; Hattie \& Marsh, 1996) - the differences in findings may be due to the fact that we analyzed only the behavior of faculty at institutions that were "highly efficient" at producing STEM bachelor degrees among their undergraduate students. Another distinction of these analyses is that we captured new measures of introducing discipline-based research practices that are linked with research excellence and student-centered teaching, a relatively new practice gaining momentum across many STEM disciplines (Singer et al., 2012). Moreover, we show that there can be greater synergy between research and teaching as faculty in research universities engage in inquirybased, student-centered teaching.

To dispel the prevailing notion that engaged, student-centered teaching equates to being a less productive researcher, faculty and the administration need to identify examples of the synergy that can be created between research and teaching. In other words, STEM faculty need to see positive role-models of 'synergy' and 'nexus practices' so that faculty can re-imagine what is possible as teachers and researchers. Institutions also need to do a better job of supporting the professional development of faculty when it comes to using research-based instructional strategies and giving them time to revise courses and practice these strategies. Indeed, in a study that examined the relationship between knowledge of research-based instructional strategies and implementation of such practices among a national sample of faculty teaching introductory physics classes, 12% of faculty reported having no knowledge of any research-based instructional strategies and only 16% were aware of these instructional practices, but had not tried any (Henderson, Dancy, \& Niewiadomska-Bugaj, 2012). Another 23\% of faculty had stopped using research-based instructional strategies after a period of initially trying them out. Clearly additional efforts must be made to support faculty in their implementation of inquirybased research activities in the classroom, so that faculty are aware of the essential features of these instructional methods, have realistic expectations of student learning gains, and become knowledgeable of the core issues (including potential problems) related to using these practices. In order to encourage academics to take advantage of these professional development
opportunities, reward policies and promotional considerations must value research-teaching nexus practices (Elsen et al., 2009).

Research inherently has a dual role in the academic enterprise: it is both a tool that enhances the learning environment and also is an integral piece of the educational process itself (Simons \& Elen, 2007). In this way the relationship between teaching and research ought to more appropriately be conceptualized as being fluid and bi-directional and necessary to help students ask new questions to advance research. A fluid relationship is necessary because 21st century problems require that students not only have acquired the requisite knowledge in the discipline, but also that students possess metacognitive skills whereby they know how to find, assess, and apply information (Biggs, 2003). In this way graduates of STEM programs become knowledge creators and critically contribute to solving rapidly changing national and global problems in science.

Further research is needed to understand those institutions that are highly productive in STEM production (relative to resources), and we have embarked on a series of qualitative case studies to help us understand the extent to which institutions are engaged in broader transformation. Most disturbing among our findings is that those institutions that are highly productive in African American STEM degree holders appear not to be engaging undergraduates in their research as much as other institutions. Because of the importance of this experience, it suggests a disparity that will manifest itself in access to graduate school and STEM careers after college. Additional investment in those institutions to ensure students are receiving quality STEM experiences may be necessary in the future. For example, NIH has funded crossinstitutional partnerships at 10 institutions to foster and improve research opportunities as students obtain their undergraduate degree. Indeed, while institutions are efficient in the use of resources for degree production, they may still require some resource-intensive experiences to better position their graduates for STEM careers.

References

Anderson, W.A., Banarjee, U., Drennan, C.L., Elgin, S.C.R., Epstein, I.R., Handelsman, J., Hatfull, G.F., Losick, R., Dowd, D.K., Olivera, B.M., Strobel, S.A., Walker, G.C., \& Warner, I.M. (2011). Changing the culture of science education at research universities. Science, 331, 152-153.
Bentler, P. M. \& Wu, E. J. C. (2002). EQS 6 for Windows user's guide. Encino, CA: Multivariate Software, Inc.
Bentler, P. M. (2005). EQS 6 structural equations program manual. Encino, CA: Multivariate Software, Inc.
Biggs, J. (2003). Teaching for quality learning at university. Buckingham, UK: SRHE and Open University Press.
Boomsma, A., \& Hoogland, J. J. (2001). The robustness of LISREL modeling revisted. In R. Cudeck, S. DuToit, \& D. Sörbom (Eds.), Structural equation modeling: Present and future. Lincolnwood, IL: Scientific Software International.
Braxton, J. M. (1996). Public trust, research activity, and the ideal of service to students as clients of teaching. In J. B. Braxton, (Ed.), Faculty teaching and research: Is there a conflict? (pp. 1-22). New Directions of Institutional Research, No. 90. San Francisco: Jossey-Bass.
Byrne, B. M. (2013). Structural equation modeling with Mplus: Basic concepts, applications, and programming. Routledge.
DeAngelo, L., S. Hurtado, J. H. Pryor, K. R. Kelly, J. L. Santos, \& W. S. Korn. (2009). The American College Teacher: National Norms for the 2007-2008 HERI Faculty Survey. Los Angeles: Higher Education Research Institute, UCLA.
Elsen, M. G., Visser-Wijnveen, G. J., Van der Rijst, R. M., \& Van Driel, J. H. (2009). How to strengthen the connection between research and teaching in undergraduate university education. Higher Education Quarterly, 63(1), 64-85.
Fairweather, J. S., \& Beach, A. L. (2002). Variations in faculty work at research universities: Implications for state and institutional policy. The Review of Higher Education, 26(1), 97-115.
Feldman, K. A. (1987). Research productivity and scholarly accomplishment of college teachers as related to their instructional effectiveness: A review and exploration. Research in Higher Education, 26(3), 227-298.
Hattie, J.W. \& Marsh, H.W. (1996). The relationship between research and teaching: A metaanalysis. Review of Educational Research, 66 (4): 507-542.
Henderson, C., Dancy, M., \& Niewiadomska-Bugaj, M. (2012). Use of research-based instructional strategies in introductory physics: Where do faculty leave the innovationdecision process? Physical Review Special Topics-Physics Education Research, 8(2), 020104.

Hurtado, S., M. K. Eagan, J. P. Pryor, H. Whang, and S. Tran. (2012).Undergraduate teaching faculty: The 2010-11 HERI faculty survey. Los Angeles: Higher Education Research Institute.
Jones, S. (2013). Beyond the teaching-research nexus: the Scholarship-Teaching-ActionResearch (STAR) conceptual framework. Higher Education Research \& Development, 32(3), 381-391.

Jöreskog, K. G., \& Sörbom, D. (1996). LISERAL 8: User's reference guide. Chicago: Scientific Software Internatioinal.
Laird, T. F. N., Engberg, M. E., \& Hurtado, S. (2005). Modeling accentuation effects: Enrolling in a diversity course and the importance of social action engagement. The Journal of Higher Education, 76(4), 448-476.
Milem, J. F., Berger, J. B., \& Dey, E. L. (2000). Faculty time allocation: A study of change over twenty years. The Journal of Higher Education, 71(4), 454-475.
Muthén, B., \& Kaplan, D. (1985). A comparison of some methodologies for the factor analysis of non-normal Likert variables. British Journal of Mathematical and Statistical Psychology, 38, 171-189.
President's Council of Advisors on Science and Technology (2012). Engage to excel: Producing one million additional
college graduates with degrees in science, technology, engineering and mathematics. Washington, DC: Office of the President.
Sax, L. J., Hagedorn, L. S., Arredondo, M., \& Dicrisi III, F. A. (2002). Faculty research productivity: Exploring the role of gender and family-related factors. Research in higher education, 43(4), 423-446.
Simons, M., \& Elen, J. (2007). The 'research-teaching nexus' and 'education through research': An exploration of ambivalences. Studies in Higher Education, 32(5), 617-631.
Singer, S. R., Nielsen, N. R. \& Schweingruber, H. A. (Eds.) Discipline-based education research: Understanding and improving learning in undergraduate science and engineering. National Research Council, National Academies of Science.
West, S. G., Finch, J. F., \& Curran, P. J. (1995). Structural equation models with non-normal variables: Problems and remedies. In R. H. Hoyle (Ed.), Structural equation modeling: Concepts, issues, and applications (pp. 56-75). Thousand Oaks, CA: Sage.

		$\begin{aligned} & \text { National Sample } \\ & \text { (} \mathrm{N}=265 \text { Institutions; } 5952 \\ & \text { faculty) } \end{aligned}$		Non-HHMI Institutions ($\mathrm{N}=226$; 4370 faculty)		HHMI Institutions ($\mathrm{N}=39$ Institutions; 1586 faculty)		Sig diff	"Low" Efficiency Institutions ($\mathrm{N}=73$ Institutions; 1522 faculty)			"Medium" EfficiencyInstitutions ($N=90$ Institutions; faculty)$\quad 2125$			"High" Efficiency Institutions ($\mathrm{N}=75$ Institutions; 1825\qquad			
		Count	Column Valid N \%	Count	Column Valid N \%	Count	Column Valid N \%		Count	Column Valid N \%	Mean Score	Count	$\begin{array}{\|c\|} \hline \text { Column } \\ \text { Valid } \mathrm{N} \% \end{array}$	Mean Score	Count	Column Valid N \%	Mean Score	Significant Differences Between Efficiency Groups
Provide instructions clearly delineating what students are to do to complete the assignment	1 Not at All 2 Occasionally 3 Frequently	88 585 4942	$\begin{gathered} 1.6 \% \\ 10.4 \% \\ 88.0 \% \end{gathered}$	$\begin{gathered} 60 \\ 417 \\ 3768 \end{gathered}$	$\begin{gathered} 1.4 \% \\ 9.8 \% \\ 88.8 \% \end{gathered}$	$\begin{gathered} 27 \\ 168 \\ 1171 \end{gathered}$	$\begin{gathered} 2.0 \% \\ 12.3 \% \\ 85.7 \% \end{gathered}$	*	$\begin{gathered} 9 \\ 122 \\ 1369 \end{gathered}$	$\begin{gathered} .6 \% \\ 8.1 \% \\ 91.3 \% \end{gathered}$	2.91	$\begin{gathered} 42 \\ 216 \\ 1652 \end{gathered}$	$\begin{gathered} 2.2 \% \\ 11.3 \% \\ 86.5 \% \end{gathered}$	2.84	$\begin{gathered} 28 \\ 193 \\ 1518 \end{gathered}$	$\begin{gathered} 1.6 \% \\ 11.1 \% \\ 87.3 \% \end{gathered}$	2.86	**Low/High
Explicitly link the assignment with course goals or learning objectives	1 Not at All 2 Occasionally 3 Frequently	$\left\|\begin{array}{l} 419 \\ 1789 \\ 3392 \end{array}\right\|$	$\begin{aligned} & 7.5 \% \\ & 31.9 \% \\ & 60.6 \% \end{aligned}$	$\left\|\begin{array}{c} 315 \\ 1323 \\ 2596 \end{array}\right\|$	$\begin{aligned} & 7.4 \% \\ & 31.2 \% \\ & 61.3 \% \end{aligned}$	$\begin{aligned} & 102 \\ & 466 \\ & 796 \end{aligned}$	$\begin{aligned} & 7.5 \% \\ & 34.2 \% \\ & 58.4 \% \end{aligned}$		$\begin{gathered} 90 \\ 442 \\ 963 \end{gathered}$	$\begin{gathered} 6.0 \% \\ 29.6 \% \\ 64.4 \% \end{gathered}$	2.58	$\begin{gathered} 175 \\ 647 \\ 1083 \end{gathered}$	$\begin{aligned} & 9.2 \% \\ & 34.0 \% \\ & 56.9 \% \end{aligned}$	2.48	$\begin{gathered} 125 \\ 579 \\ 1031 \end{gathered}$	$\begin{aligned} & 7.2 \% \\ & 33.4 \% \\ & 59.4 \% \end{aligned}$	2.52	*Low/High
Engage deeply with a significant challenge or question within your discipline	1 Not at All 2 Occasionally 3 Frequently	$\begin{aligned} & 766 \\ & 2347 \\ & 2489 \\ & \hline \end{aligned}$	$\begin{aligned} & 13.7 \% \\ & 41.9 \% \\ & 44.4 \% \end{aligned}$	$\begin{aligned} & 598 \\ & 1803 \\ & 1835 \\ & \hline \cdots \end{aligned}$	$\begin{aligned} & 14.1 \% \\ & 42.6 \% \\ & 43.3 \% \end{aligned}$	$\begin{aligned} & 167 \\ & 542 \\ & 654 \\ & 654 \end{aligned}$	$\begin{aligned} & 12.3 \% \\ & 39.8 \% \\ & 48.0 \% \end{aligned}$	*	$\begin{aligned} & 209 \\ & 617 \\ & 667 \end{aligned}$	$\begin{aligned} & 14.0 \% \\ & 41.3 \% \\ & 44.7 \% \\ & \hline \end{aligned}$	2.31	$\begin{aligned} & 285 \\ & 813 \\ & 809 \end{aligned}$	$\begin{aligned} & 14.9 \% \\ & 42.6 \% \\ & 42.4 \% \end{aligned}$	2.27	$\begin{aligned} & 220 \\ & 693 \\ & 824 \\ & 824 \end{aligned}$	$\begin{aligned} & 12.7 \% \\ & 39.9 \% \\ & 47.4 \% \\ & \hline \end{aligned}$	2.35	*Med/High
Write in the specific style or format of your discipline	1 Not at All 2 Occasionally 3 Frequently	$\begin{aligned} & 821 \\ & 1766 \\ & 3004 \end{aligned}$	$\begin{aligned} & 14.7 \% \\ & 31.6 \% \\ & 53.7 \% \end{aligned}$	$\begin{gathered} 612 \\ 1350 \\ 2263 \end{gathered}$	$\begin{aligned} & 14.5 \% \\ & 32.0 \% \\ & 53.6 \% \end{aligned}$	$\begin{aligned} & 208 \\ & 416 \\ & 740 \end{aligned}$	$\begin{aligned} & 15.2 \% \\ & 30.5 \% \\ & 54.3 \% \end{aligned}$		$\begin{aligned} & 214 \\ & 458 \\ & 816 \end{aligned}$	$\begin{aligned} & 14.4 \% \\ & 30.8 \% \\ & 54.8 \% \end{aligned}$	2.40	$\begin{gathered} 272 \\ 623 \\ 1009 \\ \hline \end{gathered}$	$\begin{aligned} & 14.3 \% \\ & 32.7 \% \\ & 53.0 \% \end{aligned}$	2.39	$\begin{aligned} & 246 \\ & 529 \\ & 963 \end{aligned}$	$\begin{aligned} & 14.2 \% \\ & 30.4 \% \\ & 55.4 \% \end{aligned}$	2.41	
Use research methods from your discipline in field or applied settings	1 Not at All 2 Occasionally 3 Frequently	$\begin{aligned} & 1020 \\ & 1986 \\ & 2589 \\ & \hline \end{aligned}$	$\begin{aligned} & 18.2 \% \\ & 35.5 \% \\ & 46.3 \% \end{aligned}$	$\begin{gathered} 782 \\ 1529 \\ 1918 \\ \hline \end{gathered}$	$\begin{aligned} & 18.5 \% \\ & 36.2 \% \\ & 45.4 \% \end{aligned}$	$\begin{aligned} & 237 \\ & 456 \\ & 671 \end{aligned}$	$\begin{aligned} & 17.4 \% \\ & 33.4 \% \\ & 49.2 \% \end{aligned}$		$\begin{aligned} & 284 \\ & 523 \\ & 683 \end{aligned}$	$\begin{aligned} & \text { 19.1\% } \\ & 35.1 \% \\ & 45.8 \% \end{aligned}$	2.27	$\begin{aligned} & 348 \\ & 722 \\ & 833 \end{aligned}$	$\begin{aligned} & 18.3 \% \\ & 37.9 \% \\ & 43.8 \% \end{aligned}$	2.25	$\begin{aligned} & 293 \\ & 580 \\ & 866 \\ & 866 \end{aligned}$	$\begin{aligned} & 16.8 \% \\ & 33.4 \% \\ & 49.8 \% \\ & \hline \end{aligned}$	2.33	**Med/High
Apply learning from both academic and field settings	1 Not at All 2 Occasionally 3 Frequently	$\left\|\begin{array}{l} 1290 \\ 1859 \\ 2437 \end{array}\right\|$	$\begin{aligned} & 23.1 \% \\ & 33.3 \% \\ & 43.6 \% \end{aligned}$	$\begin{gathered} 892 \\ 1409 \\ 1927 \end{gathered}$	$\begin{aligned} & 21.1 \% \\ & 33.3 \% \\ & 45.6 \% \end{aligned}$	$\begin{aligned} & 396 \\ & 450 \\ & 510 \end{aligned}$	$\begin{aligned} & 29.2 \% \\ & 33.2 \% \\ & 37.6 \% \end{aligned}$	**	$\begin{aligned} & 288 \\ & 466 \\ & 736 \end{aligned}$	$\begin{aligned} & 19.3 \% \\ & 31.3 \% \\ & 49.4 \% \end{aligned}$	2.30	$\begin{aligned} & 481 \\ & 650 \\ & 770 \end{aligned}$	$\begin{aligned} & 25.3 \% \\ & 34.2 \% \\ & 40.5 \% \end{aligned}$	2.15	$\begin{aligned} & 441 \\ & 587 \\ & 705 \end{aligned}$	$\begin{aligned} & 25.4 \% \\ & 33.9 \% \\ & 40.7 \% \end{aligned}$	2.15	**Low/High
Describe how different perspectives would affect the interpretation of a question or issue in your discipline	1 Not at All 2 Occasionally 3 Frequently	$\begin{aligned} & 1663 \\ & 2407 \\ & 1516 \\ & \hline \end{aligned}$	$\begin{aligned} & 29.8 \% \\ & 43.1 \% \\ & 27.1 \% \end{aligned}$	$\begin{aligned} & 1207 \\ & 1830 \\ & 1187 \\ & \hline \end{aligned}$	$\begin{aligned} & 28.6 \% \\ & 43.3 \% \\ & 28.1 \% \end{aligned}$	$\begin{aligned} & 454 \\ & 577 \\ & 328 \end{aligned}$	$\begin{aligned} & 33.4 \% \\ & 42.5 \% \\ & 24.1 \% \end{aligned}$	*	$\begin{array}{r} 413 \\ 635 \\ 443 \end{array}$	$\begin{aligned} & 27.7 \% \\ & 42.6 \% \\ & 29.7 \% \end{aligned}$	2.02	$\begin{aligned} & 612 \\ & 797 \\ & 488 \end{aligned}$	$\begin{aligned} & 32.3 \% \\ & 42.0 \% \\ & 25.7 \% \end{aligned}$	1.93	$\begin{aligned} & 533 \\ & 760 \\ & 743 \\ & \hline 43 \\ & \hline \end{aligned}$	$\begin{aligned} & 30.7 \% \\ & 43.8 \% \\ & 25.5 \% \\ & \text { 25.5 } \end{aligned}$	1.95	*Low/High
Use research methods from your discipline in field or applied settings	1 Not at All 2 Occasionally 3 Frequently	$\begin{array}{c\|} \hline 670 \\ 1772 \\ 3158 \\ \hline \end{array}$	$\begin{aligned} & 12.0 \% \\ & 31.6 \% \\ & 56.4 \% \\ & \hline \end{aligned}$	$\begin{aligned} & 490 \\ & 1366 \\ & 2379 \end{aligned}$	$\begin{aligned} & 11.6 \% \\ & 32.3 \% \\ & 56.2 \% \\ & \hline \end{aligned}$	179 406 777 2	$\begin{aligned} & 13.1 \% \\ & 29.8 \% \\ & 57.0 \% \end{aligned}$		$\begin{aligned} & 166 \\ & 495 \\ & 830 \end{aligned}$	$\begin{aligned} & 11.1 \% \\ & 33.2 \% \\ & 55.7 \% \end{aligned}$	2.45	$\begin{gathered} 253 \\ 607 \\ 1046 \end{gathered}$	$\begin{aligned} & 13.3 \% \\ & 31.8 \% \\ & 54.9 \% \end{aligned}$	2.42	$\begin{gathered} 199 \\ 518 \\ 1020 \end{gathered}$	$\begin{aligned} & 11.5 \% \\ & 29.8 \% \\ & 58.7 \% \end{aligned}$	2.47	
Provide feedback on drafts or work still in progress	1 Not at All 2 Occasionally 3 Frequently	783 2726 2091 299	$\begin{gathered} 14.0 \% \\ 48.7 \% \\ 37.3 \% \end{gathered}$	568 2069 1597	$\begin{aligned} & 13.4 \% \\ & 48.9 \% \\ & 37.7 \% \\ & \hline . \end{aligned}$	$\begin{aligned} & 214 \\ & 656 \\ & 494 \end{aligned}$	$\begin{aligned} & 15.7 \% \\ & 48.1 \% \\ & 36.2 \% \end{aligned}$		$\begin{gathered} 201 \\ 710 \\ 584 \\ \hline \end{gathered}$	$\begin{aligned} & 13.4 \% \\ & 47.5 \% \\ & 39.1 \% \end{aligned}$	2.26	$\begin{aligned} & 273 \\ & 950 \\ & 681 \end{aligned}$	$\begin{gathered} 14.3 \% \\ 49.9 \% \\ 35.8 \% \end{gathered}$	2.21	$\begin{gathered} 248 \\ 846 \\ 643 \\ 64 \end{gathered}$	$\begin{gathered} 14.3 \% \\ 48.7 \% \\ 37.0 \% \end{gathered}$	2.23	
Grading on a curve	1 None 2 Some 3 Most 4 All All/Most (Percentages combined)	$\left.\begin{gathered} 2968 \\ 1251 \\ 658 \\ 652 \end{gathered} \right\rvert\,$	$\begin{aligned} & 53.7 \% \\ & 22.6 \% \\ & 11.9 \% \\ & 11.8 \% \end{aligned}$	$\left.\begin{gathered} 2366 \\ 961 \\ 460 \\ 391 \\ 851 \end{gathered} \right\rvert\,$	$\begin{gathered} \text { 56.6\% } \\ 23.0 \% \\ 11.0 \% \\ 9.4 \% \\ 20.4 \% \end{gathered}$	601 289 198 261 459	$\begin{aligned} & \text { 44.6\% } \\ & 21.4 \% \\ & 14.7 \% \\ & 19.3 \% \\ & 34.0 \% \end{aligned}$	**	$\begin{aligned} & 866 \\ & 325 \\ & 153 \\ & 127 \\ & 280 \end{aligned}$	$\begin{aligned} & \text { 58.9\% } \\ & \text { 22.1\% } \\ & 10.4 \% \\ & 8.6 \% \\ & 19.0 \% \end{aligned}$	1.69	$\begin{gathered} 1013 \\ 415 \\ 218 \\ 235 \\ 453 \end{gathered}$	$\begin{aligned} & \text { 53.9\% } \\ & 22.1 \% \\ & 11.6 \% \\ & 12.5 \% \\ & 24.1 \% \end{aligned}$	1.83	$\begin{aligned} & 811 \\ & 408 \\ & 229 \\ & 269 \\ & 498 \end{aligned}$	$\begin{aligned} & 47.2 \% \\ & 23.8 \% \\ & 13.3 \% \\ & 15.7 \% \\ & 29.0 \% \end{aligned}$	1.97	Low/High; **Med/High
Rubric-based assessment	1 None 2 Some 3 Most 4 All All/Most (Percentages combined)	$\left\|\begin{array}{l} 1087 \\ 1534 \\ 1430 \\ 1462 \end{array}\right\|$	$\begin{aligned} & 19.7 \% \\ & 27.8 \% \\ & 25.9 \% \\ & 26.5 \% \end{aligned}$	$\left.\begin{gathered} 689 \\ 1168 \\ 1143 \\ 1173 \\ 2316 \end{gathered} \right\rvert\,$	16.5\% 28.0\% 27.4\% 28.1\% 55.5\%	398 365 287 289 576	$\begin{aligned} & \text { 29.7\% } \\ & 27.3 \% \\ & 21.4 \% \\ & 21.6 \% \\ & 43.0 \% \end{aligned}$	**	$\begin{aligned} & 199 \\ & 404 \\ & 392 \\ & 468 \\ & 860 \end{aligned}$	$\begin{aligned} & 13.6 \% \\ & 27.6 \% \\ & 26.8 \% \\ & 32.0 \% \\ & 58.8 \% \end{aligned}$	2.77	$\begin{aligned} & 386 \\ & 516 \\ & 479 \\ & 502 \\ & 981 \end{aligned}$	$\begin{aligned} & 20.5 \% \\ & 27.4 \% \\ & 25.4 \% \\ & 26.7 \% \\ & 52.1 \% \end{aligned}$	2.58	$\begin{aligned} & 417 \\ & 492 \\ & 431 \\ & 372 \\ & 803 \end{aligned}$	$\begin{aligned} & 24.4 \% \\ & 28.7 \% \\ & 25.2 \% \\ & 21.7 \% \\ & 46.9 \% \end{aligned}$	2.44	**Low/High; *Med/High
Class discussions	1 None 2 Some 3 Most 4 All All/Most (Percentages combined)	$\left\|\begin{array}{c} 366 \\ 1345 \\ 1377 \\ 2503 \end{array}\right\|$	$\begin{gathered} 6.5 \% \\ 24.1 \% \\ 24.6 \% \\ 44.8 \% \end{gathered}$	$\left.\begin{gathered} 274 \\ 991 \\ 1069 \\ 1888 \\ 2957 \end{gathered} \right\rvert\,$	6.5\% 23.5\% 25.3\% 44.7\% 70.0\%	$\begin{gathered} 91 \\ 354 \\ 307 \\ 615 \\ 922 \end{gathered}$	$\begin{gathered} -7.7 \% \\ 25.9 \% \\ 22.5 \% \\ 45.0 \% \\ 67.4 \% \end{gathered}$		$\begin{gathered} 74 \\ 309 \\ 309 \\ 385 \\ 713 \\ 1098 \end{gathered}$	$\begin{gathered} \text { 5.6\% } \\ 20.7 \% \\ 25.8 \% \\ 47.8 \% \\ 73.6 \% \end{gathered}$	3.16	$\begin{aligned} & 153 \\ & 482 \\ & 470 \\ & 798 \\ & 1268 \end{aligned}$	$\begin{gathered} 8.0 \% \\ 25.3 \% \\ 24.7 \% \\ 41.9 \% \\ 66.6 \% \end{gathered}$	3.01	$\begin{gathered} 99 \\ 457 \\ 402 \\ 778 \\ 1180 \end{gathered}$	$\begin{gathered} 5.7 \% \\ 26.3 \% \\ 23.2 \% \\ 44.8 \% \\ 68.0 \% \end{gathered}$	3.07	**Low/High
Cooperative learning (small groups)	1 None 2 Some 3 Most 4 All All/Most (Percentages combined)	$\left\|\begin{array}{c} 623 \\ 1748 \\ 1547 \\ 1671 \end{array}\right\|$	$\begin{aligned} & 11.1 \% \\ & 31.3 \% \\ & 27.7 \% \\ & 29.9 \% \end{aligned}$	443 1354 1188 1235 2423	$\begin{aligned} & 10.5 \% \\ & 32.1 \% \\ & 28.2 \% \\ & 29.3 \% \\ & 57.4 \% \end{aligned}$	$\begin{aligned} & 178 \\ & 394 \\ & 359 \\ & 435 \\ & 794 \end{aligned}$	$\begin{aligned} & 13.0 \% \\ & 28.8 \% \\ & 26.3 \% \\ & 31.8 \% \\ & 58.1 \% \end{aligned}$		$\begin{aligned} & 146 \\ & 481 \\ & 453 \\ & 410 \\ & 863 \end{aligned}$	9.8\% 32.3\% 30.4\% 27.5\% 57.9\%	2.76	$\begin{gathered} 230 \\ 595 \\ 508 \\ 570 \\ 1078 \end{gathered}$	$\begin{aligned} & 12.1 \% \\ & 31.3 \% \\ & 26.7 \% \\ & 30.0 \% \\ & 56.6 \% \end{aligned}$	2.75	$\begin{aligned} & 198 \\ & 538 \\ & 454 \\ & 544 \\ & 998 \end{aligned}$	11.4\% 31.0\% 26.2\% 31.4\% 57.6\%	2.78	
Experiential learning/Field studies	1 None	2169	39.0\%	1586	37.7\%	582	42.8\%		561	37.8\%		736	38.9\%		705	40.8\%		

Stess: Commitee work			$\begin{gathered} 599 \\ \hline \end{gathered}$			$\begin{array}{\|l\|} \hline \\ \hline \end{array}$.	$\begin{aligned} & 103 \\ & \begin{array}{l} 121 \\ \text { n27 } \\ 135 \end{array} \\ & \hline \end{aligned}$		262	$\begin{aligned} & 107 \\ & 78 \\ & 888 \\ & 888 \\ & 283 \end{aligned}$		262	$\begin{gathered} 96 \\ \hline \end{gathered}$		260	Howhtikh
Sudents	1 Not Applicable 2 Not at All 3 Somewhat	$\begin{array}{\|c\|c\|} \hline 28 \\ 2809 \\ 2305 \\ \hline \end{array}$		$\left\lvert\, \begin{gathered} 33 \\ \hline \end{gathered}\right.$	$\begin{gathered} 966 \% \\ \hline 5562 \% \end{gathered}$	$\begin{aligned} & 11 \\ & \text { sin } \\ & \text { son } \\ & \text { n20 } \end{aligned}$			$\begin{gathered} 8 \\ \substack{82 \\ 533 \\ 831} \\ \hline \end{gathered}$		271	$\begin{gathered} 204 \\ 204 \\ 1049 \end{gathered}$		269	$\begin{gathered} 16 \\ \substack{167 \\ 965} \\ 965 \end{gathered}$		2.88	
Stacting load				$\begin{array}{\|c\|c\|} \hline 88 \\ \hline \end{array}$					$\begin{gathered} 206 \\ 506 \\ 694 \end{gathered}$		281	$\begin{array}{\|c} \substack{673 \\ 883 \\ 883} \end{array}$	$\begin{gathered} 3.3 \% \\ 35.0 \% \\ 46.4 \% \end{gathered}$	274	$\begin{gathered} 118 \\ \substack{185 \\ \hline \\ 819} \\ 81 \end{gathered}$	$\begin{array}{\|l\|} \hline 1.4 \% \\ 37.4 \% \\ 47.0 \% \end{array}$	274	
Stress lackef pesesonat time						$\begin{aligned} & 162 \\ & \left.\begin{array}{l} 4.4 \\ 39 \\ 679 \\ 979 \end{array} \right\rvert\, \\ & \hline \end{aligned}$..	$\begin{aligned} & 270 \\ & \hline 15 \\ & \hline 40 \\ & \hline 109 \\ & 378 \\ & 378 \end{aligned}$		296		$\begin{aligned} & \text { Ha48 } \\ & \hline \end{aligned}$	3.3	$\begin{gathered} 247 \\ \hline \end{gathered}$	$\begin{gathered} 142.28 \\ \hline \end{gathered}$	3.05	Low/ HE h
prearesesucens				$\left.\begin{array}{c} 88 \\ 183 \\ 2939 \\ 295 \end{array}\right]$		$\begin{aligned} & \begin{array}{l} \text { co } \\ 525 \\ 600 \\ 100 \end{array} \\ & \hline \end{aligned}$.	$\begin{gathered} 254 \\ \hline 88 \\ 796 \\ 785 \end{gathered}$		27	$\begin{aligned} & 45 \\ & \text { as } \\ & \text { ans } \\ & 1031 \end{aligned}$		270	$\begin{aligned} & 38 \\ & \hline 88 \\ & 983 \\ & 938 \\ & 124 \end{aligned}$		264	
Stess seffimposed ing expectations		$\begin{array}{\|c} 36 \\ \hline \end{array}$		$\left.\begin{array}{\|c} 28 \\ 648 \\ 2424 \\ 2430 \end{array}\right)$	$\begin{aligned} & 17568 \\ & \hline \end{aligned}$	$\left.\begin{array}{\|c\|c\|} \hline 180 \\ 690 \\ 699 \\ 599 \end{array} \right\rvert\,$		\cdots	$\begin{aligned} & 124 \\ & \begin{array}{c} 24 \\ 802 \\ 433 \\ 433 \end{array} \end{aligned}$	$\begin{gathered} 8.88 \\ \hline \end{gathered}$	3.11	$\begin{aligned} & 11 \\ & \hline 21 \\ & 921 \\ & 969 \\ & 969 \end{aligned}$		3.19	$\begin{array}{\|c} 128 \\ \hline 28 \\ 865 \\ 665 \end{array}$		${ }_{322}$.-Iownigh
How many course.. (include al	$\begin{aligned} & 10,020 \\ & 23504 \end{aligned}$					$\begin{aligned} & 1072 \\ & \hline 289 \\ & 35 \end{aligned}$	$\begin{aligned} & 70.8 \% \\ & 208 \% \\ & 20 \% \end{aligned}$	-	$\begin{gathered} \substack{6512 \\ \hline \\ \hline 180} \\ \hline 10 \end{gathered}$		1.69	$\begin{array}{\|l\|l\|} \hline 1488 \\ \hline 108 \\ 108 \end{array}$		1.47	$\begin{gathered} 1134 \\ 504 \\ 590 \\ 899 \end{gathered}$	$\begin{gathered} 64.3 \% \\ 30.6 \% \\ 5.0 \% \end{gathered}$	1.41	
Hours per Week: Preparing for te.. reading student papers and grading)		$\begin{array}{\|l\|l\|} \hline 1203 \\ \hline 203 \\ \hline 259 \\ \hline 2598 \end{array}$			$\begin{aligned} & 190.0 \% \\ & \hline \end{aligned}$	$\begin{aligned} & 3.50 \\ & \left.\begin{array}{l} 392 \\ 323 \\ 373 \end{array} \right\rvert\, \end{aligned}$.	$\begin{aligned} & 278 \\ & \substack{288 \\ \hline 689 \\ \hline 538} \end{aligned}$		217	$\begin{array}{\|l\|} \hline 415 \\ 85 \\ 865 \\ \hline 65 \end{array}$		213	$\begin{aligned} & 898 \\ & \begin{array}{l} 298 \\ 800 \\ 557 \end{array} \\ & 597 \end{aligned}$		209	
	$\underbrace{}_{\substack{100 \\ 2 \text { 2les }}}$	$\begin{array}{\|l\|} \hline 2330 \\ \hline 3965 \end{array}$	$\begin{aligned} & 38.0 \% \\ & 62.0 \% \end{aligned}$	$\begin{aligned} & 15020 \\ & 2708 \\ & 208 \end{aligned}$		$\begin{aligned} & 626 \\ & 788 \\ & 78 \end{aligned}$	$\begin{aligned} & 44.9 \% \\ & 55.1 \% \end{aligned}$.	$\begin{aligned} & 588 \\ & 950 \\ & 95 \end{aligned}$	$\begin{aligned} & 35.7 \% \\ & 64.3 \% \end{aligned}$	1.64	$\begin{array}{\|l\|l\|} \hline 006 \\ 120 \end{array}$	$\begin{aligned} & 36.8 \% \\ & 63.2 \% \end{aligned}$	1.63	$\begin{gathered} 715 \\ 1035 \\ \hline \end{gathered}$	$\begin{aligned} & 40.9 \% \\ & 59.1 \% \end{aligned}$	159	How/
	$\begin{aligned} & 1 \text { Not Avai.............................. } \\ & 2 \text { Not Eligible } \\ & 3 \text { No } \\ & 4 \text { Yes } \end{aligned}$		$\begin{gathered} 5006 \\ \hline \end{gathered}$			$\begin{aligned} & 59 \\ & 73 \\ & 7828 \\ & 528 \\ & 582 \end{aligned}$	$\begin{gathered} 4.228 \\ \hline \end{gathered}$				3.14	$\begin{array}{\|l\|} \hline 60 \\ 140 \\ 1067 \\ 1065 \\ 685 \end{array}$		3.23	$\begin{gathered} 68 \\ 94 \\ 983 \\ 960 \\ \hline 60 \end{gathered}$		325	
diun		${ }^{2264}$	${ }_{\text {cosem }}^{\text {40, }}$	- 1294		${ }_{\substack{312 \\ 103}}$	${ }_{\text {2 }}^{2 \times 5 \%}$		788 71 71	$\underbrace{\substack{4828 \% \\ 5188}}_{\text {a }}$	1.52	$\xrightarrow[\substack{713 \\ 1211}]{1}$	${ }_{\substack{37.18 \\ 629}}^{\substack{\text { a }}}$	1.63	(129	${ }_{\substack{31288 \\ 688}}^{\substack{\text { a }}}$	1.69	
Woreden wht undergauaues on aresearch poped	2res		$\underbrace{310 \%}_{\text {30, }}$	(1980		边 25		\cdots	¢	${ }_{\substack{3788 \\ 628}}^{\text {228\% }}$	1.62		$\underset{\substack{2819 \% \\ 719 \%}}{\substack{\text { a }}}$	1.72	(130	${ }_{\substack{23.96 \\ 76,18}}^{\substack{\text { a }}}$	1.76	Night Medtigh
Vite wwit indergadue stuens st	$\begin{aligned} & 1 \text { Not at All } \\ & 2 \text { To Some Extent } \\ & 3 \text { To a Great Extent } \end{aligned}$		$\begin{aligned} & 57.6 \% \\ & 29.0 \% \\ & 13.3 \% \end{aligned}$	$\begin{aligned} & 2929 \\ & \hline 1296 \\ & \hline 136 \end{aligned}$	$\begin{aligned} & 62086 \\ & 27248 \\ & \hline 1248 \end{aligned}$	$\begin{aligned} & 689 \\ & 407 \\ & 420 \end{aligned}$	$\begin{aligned} & 50.3 \% \\ & 33.8 \% \\ & 15.9 \% \end{aligned}$	\cdots	$\begin{gathered} 899 \\ \left.\begin{array}{c} 899 \\ 398 \\ 190 \end{array}\right) \end{gathered}$	$\begin{gathered} 59.6 \% \\ 27.3 \% \\ 13.0 \% \end{gathered}$	1.53		$\begin{aligned} & 56.8 \% \\ & 29.8 \% \\ & 13.5 \% \end{aligned}$	1.57	$\begin{gathered} 9221 \\ 51 \\ 256 \\ \hline \end{gathered}$	$\begin{aligned} & 53.1 \% \\ & 31.8 \% \\ & 15.1 \% \end{aligned}$	1.62	- Howh
Wubised with undergaduates	$\begin{aligned} & 1 \text { Not at All } \\ & 2 \text { To Some Extent } \\ & 3 \text { To a Great Ext............................... } \end{aligned}$			$\left.\begin{array}{\|c} 2954 \\ 8.88 \\ 288 \\ 281 \end{array} \right\rvert\,$	$\begin{aligned} & 7.66 \% \\ & \text { 2105\% } \\ & 688 \end{aligned}$	$\begin{aligned} & 285 \\ & 205 \\ & 190 \\ & 190 \end{aligned}$		*	$\begin{aligned} & 1036 \\ & 3006 \\ & 306 \end{aligned}$		1.36			1.42	$\begin{aligned} & 1023 \\ & \hline \\ & \hline 159 \\ & 1898 \end{aligned}$		1.52	Oowlebl -
				$\left[\begin{array}{l} 906 \\ 702 \\ 787 \\ 785 \\ 725 \\ 575 \\ \hline 187 \\ 321 \end{array}\right]$.		$\begin{gathered} \text { 25.4\% } \\ 18.6 \% \\ 11.5 \% \\ 16.0 \% \\ 11.8 \% \\ 10.2 \% \\ 6.4 \% \end{gathered}$	${ }^{3} 26$		$\begin{aligned} & 14.2 \% \\ & 14.9 \% \\ & 10.8 \% \\ & 17.8 \% \\ & 15.7 \% \\ & 14.8 \% \\ & 11.7 \% \end{aligned}$	3.9		12.0% 13.2% 9.6% 15.3% 15.5% 16.5% 17.8%	${ }^{430}$	- $\mathrm{How/H}$
Chapess nedites voumes								*	(1964		1.54			1.79			${ }^{198}$	

	$\begin{aligned} & 621-50 \\ & 751+ \end{aligned}$	64 12	$\begin{gathered} 1.2 \% \\ .2 \% \end{gathered}$	30 6	$\begin{aligned} & .7 \% \\ & .1 \% \end{aligned}$	34 6	$\begin{aligned} & 2.5 \% \\ & .4 \% \end{aligned}$		1	$\begin{aligned} & .5 \% \\ & .1 \% \end{aligned}$		21 5	1.1% $.3 \%$		34 6	2.0\% $.3 \%$		
in the past two years, how many of your	1 None	2072	36.7\%	1783	42.0\%	288	20.6\%	**	687	46.0\%		662	34.3\%		484	27.5\%		**Low/High; **Med/High
professional writings have been published or	21-2	1605	28.4\%	1231	29.0\%	374	26.7\%		406	27.2\%		571	29.6\%		511	29.0\%		
accepted for publication?	3 3-4	855	15.1\%	571	13.4\%	284	20.3\%		185	12.4\%	2.01	316	16.4\%	2.29	303	17.2\%	2.56	
	4-10	756	13.4\%	485	11.4\%	270	19.3\%		150	10.1\%		268	13.9\%		293	16.6\%		
	511-20	236	4.2\%	112	2.6\%	123	8.8\%		45	3.0\%		79	4.1\%		104	5.9\%		
	621+	126	2.2\%	64	1.5\%	61	4.4\%		19	1.3\%		33	1.7\%		66	3.7\%		

Note: All STEM efficiency means that efficiency scores were based on the production of STEM degrees by all students seeking a STEM degree, irrespective of their race and gender.
${ }^{*}$ p $<.05 ; * *$ p $<.01$

	All Institutions								
	β	S.E.	Sig.						
Primary Findings (The same across institutional type)									
Teaching-Research Nexus									
Student-Centered Pedagogy	1.0490 .057		***						
Scholarly Productivity	0.162	0.033	***						
Covariance: Scholarly Productivity \& Student-	$0.098 \quad 0.032$								
Secondary Findings by Institutional type									
	Liberal Arts Institutions			Comprehensive Institutions			Research Institutions		
	β	S.E.	Sig.	β	S.E.	Sig.	β	S.E.	Sig.
Teaching-Research Nexus									
Sex of Faculty	0.185	0.106	n.s.	0.011	0.130	n.s.	0.206	0.085	*
Number of courses teaching the term survey was taken at all institutions in which the individual teaches (e.g., $0,1,2$, 3)	0.115	0.043	**	0.029	0.044	n.s.	0.108	0.032	**
Academic Rank (Higher number indicating more senior faculty)	0.033	0.050	n.s.	0.098	0.055	n.s.	0.121	0.041	**
Scholarly Productivity									
Sex of Faculty	-0.241	0.110	*	-0.464	0.124	***	-0.335	0.079	**
Number of courses teaching the term survey was taken at all institutions in which the individual teaches (e.g., $0,1,2$, 3)	-0.035	0.044	n.s.	-0.045	0.043	n.s.	-0.172	0.030	***
Academic Rank (Higher number indicating more senior faculty)	0.369	0.051	***	0.432	0.052	***	0.713	0.036	***
Student-Centered Pedagogy									
Sex of Faculty	0.525	0.103	***	0.524	0.121	***	0.388	0.078	***
Number of courses teaching the term survey was taken at all institutions in which the individual teaches (e.g., $0,1,2$, 3)	0.051	0.042	n.s.	0.028	0.042	n.s.	0.093	0.029	**
Academic Rank (Higher number indicating more senior faculty)	0.010	0.047	n.s.	-0.088	0.048	n.s.	-0.095	0.031	**

Note: $\mathrm{n}=1825$ STEM faculty across 75 institutions considered to be "highly efficient" in producing STEM degrees among students (irrespective of race or gender) considering the resources to which they have access; $\quad \chi^{2}=1184.693$ $\mathrm{df}=590 \quad \mathrm{CFI}=0.951 \quad$ RMSEA $=0.041 \quad \mathrm{SRMR}=0.054$
${ }^{*} \mathrm{p}<.05^{* *} \mathrm{p}<.01^{* * *} \mathrm{p}<.001$

Table 3. Factors predicting faculty use of "Research -Teaching Nexus", which is the frequency of using research discipline-based assignments as a teaching tool in class.

	Beta (unstandardized)	S.E.	$\underset{\text { (standardized) }}{\text { Beta }}$	t	Sig.
Intercept	2.60	1.54		1.69	
Faculty Demographic Characteristics					
Sex (higher value is female)	-0.02	0.21	0.00	-0.09	
Associate Professor (compared to full professor)	0.06	0.23	0.00	0.24	
Assistant Professor (compared to full professor)	-0.18	0.25	-0.01	-0.71	
Non-tenure faculty member (compared to full professor)	-0.70	0.33	-0.02	-2.14	*
Underrepresented Racial Minority (compared to white or Asian)	0.18	0.40	0.00	0.43	
Number of courses being taught during current term (include all institutions at which you teach) (e.g., $0,1,2,3$)? (20 maximum)	0.46	0.07	0.08	6.19	***
Faculty is from agriculture or forestry department (compared to the Biological Sciences)	-1.08	0.49	-0.02	-2.20	*
Faculty is from other engineering department (compared to the Biological Sciences)	-1.36	0.36	-0.04	-3.77	***
Faculty is from health-related department	1.90	0.30	0.09	6.24	**
Faculty is from mathematics or statistics department (compared to the Biological Sciences)	-3.44	0.34	-0.13	-10.21	***
Faculty is from Physical Sciences department (compared to the Biological Sciences)	-1.25	0.28	-0.06	-4.47	***
Faculty is from Other Technical department (compared to the Biological Sciences)	-3.34	0.39	-0.10	-8.52	***
Institutional Characteristics					
Institution got HHMI funding in last 2 rounds of awards	0.29	0.25	0.01	1.18	
Control of institution (Higher value private)	-0.52	0.24	-0.03	-2.14	*
Full-time equivalent fall enrollment	-0.01	0.01	-0.01	-0.87	
Percent of students admitted from the total who applied	-0.01	0.01	-0.02	-1.57	
Liberal Arts Institution (compared to Masters Comprehensive)	-0.32	0.27	-0.02	-1.16	
Research Institution (compared to Masters Comprehensive)	-0.19	0.28	-0.01	-0.67	
Faculty Opinions and Perceptions					
Opinion: This institution takes responsibility for educating underprepared students	-0.07	0.12	-0.01	-0.54	

Inst Priority: Develop a sense of community among students and faculty Opinion: There is adequate support for faculty development Opinion: All students have the potential to excel in my courses	0.22 -0.20 0.35	0.12 0.11 0.13	0.02 -0.02 0.03	1.93 -1.82 2.63	**
Faculty behaviors					
Prof Develop-Internal grants for Research	0.57	0.21	0.03	2.74	**
Extent to which faculty engaged students in research	0.09	0.01	0.09	6.79	***
Construct: Scholarly Productivity	0.10	0.01	0.10	7.12	***
Hours per Week: Preparing for teaching (including reading student papers and grading)	0.19	0.06	0.03	2.95	**
Faculty pedagogy, approaches to teaching, and goals for student outcomes					
Construct: Use of student-centered pedagogy	0.31	0.01	0.31	23.15	***
Method: "Learn before lecture" through multimedia tools (e.g., flipping the classroom)	0.28	0.11	0.03	2.65	**
Method: Techniques to create an inclusive classroom environment for diverse students	0.49	0.10	0.06	5.06	***
Assessment: Provide feedback on drafts or work still in progress	1.76	0.15	0.13	11.84	***
Assessment: Explicitly link the assignment with course goals or learning objectives	1.33	0.16	0.09	8.24	***
Assessment: Provide instructions clearly delineating what students are to do to complete the assignment	1.44	0.25	0.06	5.75	***
Affect: Structure your courses so that students master a conceptual understanding of course content	1.09	0.22	0.05	5.01	***
Habits of Mind: Accept mistakes as part of the learning process	1.14	0.16	0.08	7.26	***
Goal: Help students evaluate the quality and reliability of information	0.72	0.10	0.08	7.16	***
Method: Grading on a curve	0.06	0.09	0.01	0.61	
Method: Rubric-based assessment	0.05	0.10	0.01	0.47	

Note: p<.05*, p<.01**, p<. 001
$\mathrm{n}=5952$ faculty across 265 institutions

		"Low" Efficiency Institutions ($\mathrm{N}=94$ Institutions; 1460 faculty)			"Medium" Efficiency Institutions ($\mathrm{N}=71$ Institutions; 2028 faculty)			"High" Efficiency Institutions ($\mathrm{N}=68$ Institutions; 1639 faculty)			
		Count	Column Valid N \%	Mean Score	Count	$\underset{\substack{\text { Column Valid } \\ \mathrm{N} \%}}{ }$	Mean Score	Count	$\begin{gathered} \text { Column Valid } \\ \text { N\% } \end{gathered}$	Mean Score	Significant Differences Between Efficiency Groups
Provide instructions clearly delineating what students are to do to complete the assignment	1 Not at All 2 Occasionally 3 Frequently	$\begin{gathered} 37 \\ 168 \\ 1234 \\ \hline \end{gathered}$	$\begin{aligned} & 2.6 \% \\ & 11.7 \% \\ & 85.8 \% \end{aligned}$	2.83	$\begin{gathered} 20 \\ 195 \\ 1786 \end{gathered}$	$\begin{gathered} 1.0 \% \\ 9.7 \% \\ 89.3 \% \end{gathered}$	2.88	$\begin{gathered} 22 \\ 154 \\ 1432 \\ \hline \end{gathered}$	$\begin{aligned} & 1.4 \% \\ & 9.6 \% \\ & 89.1 \% \end{aligned}$	2.88	*Low/High
Explicitly link the assignment with course goals or learning objectives	1 Not at All 2 Occasionally 3 Frequently	$\begin{aligned} & 127 \\ & 498 \\ & 809 \end{aligned}$	$\begin{aligned} & 8.9 \% \\ & 34.7 \% \\ & 56.4 \% \end{aligned}$	2.48	$\begin{gathered} \cdots \\ \hline 143 \\ 636 \\ 1218 \end{gathered}$	$\begin{aligned} & 7.2 \% \\ & 31.8 \% \\ & 61.0 \% \end{aligned}$	2.54	$\begin{aligned} & 117 \\ & 505 \\ & 981 \end{aligned}$	$\begin{aligned} & 7.3 \% \\ & 31.5 \% \\ & 61.2 \% \end{aligned}$	2.54	
Engage deeply with a significant challenge or question within your discipline	1 Not at All 2 Occasionally 3 Frequently	$\begin{aligned} & 245 \\ & 599 \\ & 593 \end{aligned}$	$\begin{aligned} & 17.0 \% \\ & 41.7 \% \\ & 41.3 \% \end{aligned}$	2.24	$\begin{aligned} & 246 \\ & 838 \\ & 909 \end{aligned}$	$\begin{aligned} & 12.3 \% \\ & 42.0 \% \\ & 45.6 \% \end{aligned}$	2.33	$\begin{aligned} & 201 \\ & 649 \\ & 756 \end{aligned}$	$\begin{aligned} & 12.5 \\ & \text { 40.4\% } \\ & 47.1 \% \end{aligned}$	2.35	*Low/High
Write in the specific style or format of your discipline	1 Not at All 2 Occasionally 3 Frequently	$\begin{aligned} & 234 \\ & 463 \\ & 740 \end{aligned}$	$\begin{aligned} & 16.3 \% \\ & 162.2 \% \\ & 51.5 \% \end{aligned}$	2.35	$\begin{gathered} 280 \\ 631 \\ 1079 \end{gathered}$	$\begin{aligned} & 14.1 \% \\ & 31.7 \% \\ & 54.2 \% \end{aligned}$	2.40	$\begin{aligned} & 204 \\ & 489 \\ & 909 \end{aligned}$	$\begin{aligned} & 12.7 \% \\ & 30.5 \% \\ & 56.7 \% \end{aligned}$	2.44	*Low/High
Use research methods from your discipline in field or applied settings	1 Not at All 2 Occasionally 3 Frequently	$\begin{aligned} & 282 \\ & 531 \\ & 621 \end{aligned}$	$\begin{aligned} & 19.7 \% \\ & 37.0 \% \\ & 43.3 \% \end{aligned}$	2.24	$\begin{aligned} & 346 \\ & 730 \\ & 91 \end{aligned}$	$\begin{aligned} & 17.4 \% \\ & 36.6 \% \\ & 46.0 \% \end{aligned}$	2.29	$\begin{aligned} & 271 \\ & 527 \\ & 807 \end{aligned}$	$\begin{aligned} & 16.9 \% \\ & 32.8 \% \\ & 50.3 \% \end{aligned}$	2.33	**Low/High
Apply learning from both academic and field settings	1 Not at All 2 Occasionally 3 Frequently	$\begin{aligned} & 360 \\ & 506 \\ & 570 \end{aligned}$	$\begin{aligned} & 25.1 \% \\ & 35.2 \% \\ & 39.7 \% \end{aligned}$	2.15	$\begin{aligned} & 465 \\ & 680 \\ & 848 \end{aligned}$	$\begin{aligned} & 23.3 \% \\ & 34.1 \% \\ & 42.5 \% \end{aligned}$	2.19	$\begin{aligned} & 362 \\ & 490 \\ & 742 \end{aligned}$	$\begin{aligned} & 22.7 \% \\ & 30.7 \% \\ & 46.5 \% \end{aligned}$	2.24	**Low/High
Describe how different perspectives would affect the interpretation of a question or issue in your discipline	1 Not at Ail 2 Occasionally 3 Frequently	$\begin{aligned} & 474 \\ & 616 \\ & 345 \end{aligned}$	$\begin{aligned} & 33.0 \% \\ & 42.9 \% \\ & 24.0 \% \end{aligned}$	1.91	$\begin{aligned} & 596 \\ & 879 \\ & 515 \end{aligned}$	$\begin{aligned} & \text { 29.9\% } \\ & 44.2 \% \\ & 25.9 \% \end{aligned}$	1.96	$\begin{aligned} & 461 \\ & 658 \\ & 680 \\ & 480 \end{aligned}$	$\begin{aligned} & 28.8 \% \\ & 41.2 \% \\ & 3.0 \% \end{aligned}$	2.01	**Low/high
Weigh the meaning and significance of evidence	1 Not at All 2 Occasionally 3 Frequently	$\begin{gathered} 208 \\ 466 \\ 761 \\ \hline \end{gathered}$	$\begin{aligned} & 14.5 \% \\ & 32.5 \% \\ & 53.0 \% \end{aligned}$	2.39		$\begin{aligned} & 11.5 \% \\ & 32.5 \% \\ & 56.0 \% \end{aligned}$	2.44	$\begin{aligned} & 166 \\ & 475 \\ & .960 \\ & . \end{aligned}$	$\begin{aligned} & 10.4 \% \\ & 29.7 \% \\ & 60.0 \% \end{aligned}$	2.50	**Low/High
Provide feedback on drafts or work still in progress	1 Not at All 2 Occasionally 3 Frequently	$\begin{aligned} & 209 \\ & 688 \\ & 536 \end{aligned}$	$\begin{aligned} & 14.6 \% \\ & 48.0 \% \\ & 37.4 \% \end{aligned}$	2.23	$\begin{gathered} 292 \\ 998 \\ 704 \\ 70 \end{gathered}$	$\begin{aligned} & \text { 14.6\% } \\ & 50.1 \% \\ & 35.3 \% \end{aligned}$	2.21	$\begin{aligned} & 201 \\ & 775 \\ & 632 \\ & 632 \end{aligned}$	$\begin{aligned} & \text { 12.5\% } \\ & 48.2 \% \\ & 39.3 \% \end{aligned}$	2.27	
Grading on a curve	1 None 2 Some 3 Most 4 All All/Most (Percentages combined)	$\begin{aligned} & 741 \\ & 335 \\ & 163 \\ & 168 \end{aligned}$	$\begin{aligned} & 52.7 \% \\ & 23.8 \% \\ & 11.6 \% \\ & 11.9 \% \\ & 23.5 \% \end{aligned}$	1.83	$\begin{aligned} & 1024 \\ & 464 \\ & 253 \\ & 230 \end{aligned}$	$\begin{aligned} & \text { 52.0\% } \\ & 23.5 \% \\ & 12.8 \% \\ & 11.7 \% \\ & 24.5 \% \end{aligned}$	1.84	$\begin{aligned} & 858 \\ & 334 \\ & 175 \\ & 225 \\ & 25 \end{aligned}$	$\begin{aligned} & 53.9 \% \\ & 21.0 \% \\ & 11.0 \% \\ & 14.1 \% \\ & \text { 25.1\% } \end{aligned}$	1.85	
Rubric-aased assessment	1 None 2 Some 3 Most 4 All All/Most (Percentages combined)	$\begin{aligned} & 296 \\ & 394 \\ & 355 \\ & 359 \end{aligned}$	$\begin{aligned} & 21.1 \% \\ & 28.1 \% \\ & 25.3 \% \\ & 25.6 \% \\ & 50.9 \% \end{aligned}$	2.55	$\begin{aligned} & 347 \\ & 562 \\ & 542 \\ & 522 \end{aligned}$	$\begin{aligned} & 17.6 \% \\ & 28.5 \% \\ & 27.5 \% \\ & 26.5 \% \\ & 53.9 \% \end{aligned}$	2.63	$\begin{aligned} & 344 \\ & 427 \\ & 382 \\ & 430 \end{aligned}$	$\begin{aligned} & \text { 21.7\% } \\ & 27.0 \% \\ & 24.1 \% \\ & 27.2 \% \\ & 51.3 \% \end{aligned}$	2.57	
Class discussions	1 None 2 Some 3 Most 4 All All/Most (Percentages combined)	$\begin{aligned} & 128 \\ & 372 \\ & 361 \\ & 567 \end{aligned}$	$\begin{aligned} & 9.0 \% \\ & 26.1 \% \\ & 25.3 \% \\ & 39.7 \% \\ & 65.0 \% \end{aligned}$	2.96	$\begin{aligned} & 108 \\ & 452 \\ & 499 \\ & 933 \end{aligned}$	$\begin{aligned} & 5.4 \% \\ & 22.7 \% \\ & 25.1 \% \\ & 46.8 \% \\ & 71.9 \% \end{aligned}$	3.13	$\begin{aligned} & 94 \\ & 400 \\ & 375 \\ & 740 \end{aligned}$	$\begin{gathered} 5.8 \% \\ 24.9 \% \\ 23.3 \% \\ 46.0 \% \\ 69.3 \% \end{gathered}$	3.09	
Cooperative learning (small groups)	1 None 2 Some 3 Most 4 All All/Most (Percentages combined)	$\begin{aligned} & 194 \\ & 450 \\ & 394 \\ & 392 \end{aligned}$	13.6\% 31.5\% 27.6\% 27.4\% 55.0\%	2.69	$\begin{aligned} & 186 \\ & 612 \\ & 571 \\ & 620 \end{aligned}$	9.4\% 30.8\% 28.7\% 31.2\% 59.9\%	2.82	$\begin{aligned} & 178 \\ & 514 \\ & 428 \\ & 487 \end{aligned}$	11.1\% 32.0\% 26.6\% 30.3\% 56.9\%	2.76	
Experiential learning/Field studies	$\begin{aligned} & 1 \text { None } \\ & 2 \text { Some } \end{aligned}$	$\begin{aligned} & 566 \\ & 430 \end{aligned}$	$\begin{aligned} & 39.8 \% \\ & 30.2 \% \end{aligned}$		$\begin{aligned} & 753 \\ & 591 \end{aligned}$	$\begin{aligned} & 38.0 \% \\ & 29.8 \% \end{aligned}$		$\begin{aligned} & 640 \\ & 443 \end{aligned}$	$\begin{aligned} & \text { 40.0\% } \\ & 27.7 \% \end{aligned}$		

	3 Most 4 All All/Most (Percentages combined)	$\begin{aligned} & 243 \\ & 183 \end{aligned}$	$\begin{aligned} & 17.1 \% \\ & 12.9 \% \\ & 30.0 \% \end{aligned}$	2.03	$\begin{aligned} & 349 \\ & 289 \end{aligned}$	$\begin{aligned} & 17.6 \% \\ & 14.6 \% \\ & 32.2 \% \end{aligned}$	2.09	$\begin{aligned} & 275 \\ & 242 \end{aligned}$	$\begin{aligned} & 17.2 \% \\ & 15.1 \% \\ & 32.3 \% \end{aligned}$	2.07	
Performances/Demonstrations	1 None 2 Some 3 Most 4 All All/Most (Percentages combined)	$\begin{aligned} & 489 \\ & 461 \\ & 290 \\ & 187 \end{aligned}$	$\begin{aligned} & 34.3 \% \\ & 32.3 \% \\ & 20.3 \% \\ & 13.1 \% \\ & 33.4 \% \end{aligned}$	2.12	$\begin{aligned} & 679 \\ & 587 \\ & 414 \\ & 306 \end{aligned}$	34.2% 29.6\% 20.8\% 15.4\% 36.3\%	2.17	$\begin{aligned} & 617 \\ & 475 \\ & 288 \\ & 223 \end{aligned}$	$\begin{aligned} & 38.5 \% \\ & 29.6 \% \\ & 18.0 \% \\ & 13.9 \% \\ & 31.9 \% \end{aligned}$	2.07	*Med/High
Group projects	1 None 2 Some 3 Most 4 All All/Most (Percentages combined)	$\begin{aligned} & 270 \\ & 508 \\ & 357 \\ & 298 \end{aligned}$	$\begin{aligned} & 18.8 \% \\ & 35.5 \% \\ & 24.9 \% \\ & 20.8 \% \\ & 45.7 \% \end{aligned}$	2.48	$\begin{aligned} & 311 \\ & 696 \\ & 536 \\ & 446 \end{aligned}$	15.6\% 35.0\% 26.9\% 22.4\% 49.4\%	2.56	$\begin{aligned} & 280 \\ & 575 \\ & 412 \\ & 339 \end{aligned}$	$\begin{aligned} & 17.4 \% \\ & 35.8 \% \\ & 25.7 \% \\ & 21.1 \% \\ & 46.8 \% \end{aligned}$	2.50	
student-selected topics for course content	1 None 2 Some 3 Most 4 All All/Most (Percentages combined)	$\begin{aligned} & 563 \\ & 622 \\ & 147 \\ & 99 \end{aligned}$	$\begin{aligned} & 39.3 \% \\ & 43.5 \% \\ & 10.3 \% \\ & 6.9 \% \\ & 17.2 \% \end{aligned}$	1.85	$\begin{aligned} & 732 \\ & 912 \\ & 226 \\ & 117 \end{aligned}$	$\begin{gathered} \text { 36.8\% } \\ 45.9 \% \\ 11.4 \% \\ 5.9 \% \\ 17.3 \% \end{gathered}$	1.86	$\begin{aligned} & 560 \\ & 732 \\ & 189 \\ & 125 \end{aligned}$	$\begin{aligned} & 34.9 \% \\ & 45.6 \% \\ & 11.8 \% \\ & 7.8 \% \\ & 19.6 \% \end{aligned}$	1.92	
Reflective writing/journaling	1 None 2 Some 3 Most 4 All All/Most (Percentages combined)	$\begin{aligned} & 820 \\ & 385 \\ & 137 \\ & 81 \end{aligned}$	$\begin{aligned} & 57.6 \% \\ & 27.1 \% \\ & 9.5 \% \\ & 5.7 \% \\ & 15.3 \% \end{aligned}$	1.63	$\begin{aligned} & 1096 \\ & 560 \\ & 210 \\ & 121 \end{aligned}$	55.2\% 28.2\% 10.6\% 6.1\% 16.7\%	1.68	$\begin{aligned} & 862 \\ & 448 \\ & 150 \\ & 144 \end{aligned}$	$\begin{aligned} & 53.7 \% \\ & 27.9 \% \\ & 9.4 \% \\ & 9.0 \% \\ & 18.3 \% \end{aligned}$	1.74	
Using real-life problems	1 None 2 Some 3 Most 4 All All/Most (Percentages combined)	$\begin{gathered} \\ 68 \\ 284 \\ 374 \\ 707 \end{gathered}$	$\begin{aligned} & \text { 4.7\% } \\ & 19.8 \% \\ & 26.1 \% \\ & 49.3 \% \\ & 75.4 \% \end{aligned}$	3.20	$\begin{gathered} 79 \\ 370 \\ 536 \\ 1009 \end{gathered}$	$\begin{aligned} & 4.0 \% \\ & 18.6 \% \\ & 26.9 \% \\ & 50.6 \% \\ & 77.5 \% \end{aligned}$	3.24	$\begin{aligned} & 95 \\ & 330 \\ & 438 \\ & 743 \end{aligned}$	$\begin{aligned} & 5.9 \% \\ & 20.5 \% \\ & 27.3 \% \\ & 46.3 \% \\ & 73.5 \% \end{aligned}$	3.14	
Using student inquiry to drive learning	1 None 2 Some 3 Most 4 All All/Most (Percentages combined)	$\begin{aligned} & 142 \\ & 529 \\ & 393 \\ & 368 \end{aligned}$	$\begin{aligned} & 9.9 \% \\ & 36.9 \% \\ & 27.4 \% \\ & 25.7 \% \\ & \text { 23.1\% } \end{aligned}$	2.69	$\begin{aligned} & 184 \\ & 709 \\ & 590 \\ & 501 \end{aligned}$	$\begin{aligned} & 9.3 \% \\ & 35.7 \% \\ & 29.7 \% \\ & 25.3 \% \\ & 55.0 \% \end{aligned}$	2.71	$\begin{aligned} & 186 \\ & 586 \\ & 445 \\ & 386 \end{aligned}$	$\begin{aligned} & 11.6 \% \\ & 36.6 \% \\ & 27.8 \% \\ & 24.1 \% \\ & 51.8 \% \end{aligned}$	2.64	
Student presentations	1 None 2 Some 3 Most 4 All All/Most (Percentages combined)	$\begin{aligned} & 235 \\ & 582 \\ & 344 \\ & 247 \end{aligned}$	$\begin{aligned} & 16.7 \% \\ & 41.3 \% \\ & 24.4 \% \\ & 17.5 \% \\ & 42.0 \% \end{aligned}$	2.43	$\begin{aligned} & 284 \\ & 810 \\ & 539 \\ & 350 \end{aligned}$	14.3\% 40.8\% 27.2\% 17.7\% 44.8\%	2.48	$\begin{aligned} & 230 \\ & 601 \\ & 425 \\ & 337 \end{aligned}$	$\begin{aligned} & 14.4 \% \\ & 37.7 \% \\ & 26.7 \% \\ & 21.2 \% \\ & 47.8 \% \end{aligned}$	2.55	*Low/High
"Learn before lecture" through multimedia tools (e.g., flipping the classroom)	1 None 2 Some 3 Most 4 All All/Most (Percentages combined)	$\begin{aligned} & 625 \\ & 495 \\ & 165 \\ & 122 \end{aligned}$	$\begin{gathered} 44.5 \% \\ 35.2 \% \\ 11.7 \% \\ 8.6 \% \\ 20.3 \% \end{gathered}$	1.84	$\begin{aligned} & 787 \\ & 750 \\ & 264 \\ & 175 \end{aligned}$	$\begin{gathered} 39.8 \% \\ 38.0 \% \\ 13.4 \% \\ 8.9 \% \\ 22.2 \% \end{gathered}$	1.91	$\begin{aligned} & \text { " } 691 \\ & 564 \\ & 190 \\ & 145 \end{aligned}$	$\begin{gathered} 43.5 \% \\ 35.5 \% \\ 11.9 \% \\ 9.1 \% \\ \text { 21.1\% } \end{gathered}$	1.87	
Techniques to create an inclusive classroom environment for diverse students	1 None 2 Some 3 Most 4 All All/Most (Percentages combined)	$\begin{aligned} & 392 \\ & 375 \\ & 310 \\ & 326 \end{aligned}$	$\begin{aligned} & 27.9 \% \\ & 26.7 \% \\ & 22.1 \% \\ & 23.2 \% \\ & 45.3 \% \end{aligned}$	2.41	$\begin{aligned} & 502 \\ & 619 \\ & 458 \\ & 398 \end{aligned}$	25.4\% 31.3\% 23.2\% 20.1\% 43.3\%	2.38	$\begin{aligned} & \text { 443 } \\ & 433 \\ & 346 \\ & 361 \end{aligned}$	$\begin{aligned} & 28.0 \% \\ & 27.4 \% \\ & 21.9 \% \\ & 22.8 \% \\ & 44.7 \% \end{aligned}$	2.39	
try to dispel perceptions of competition	1 Disagree Strongly 2 Disagree Somewhat 3 Agree Somewhat 4 Agree Strongly	$\begin{aligned} & 68 \\ & 637 \\ & 339 \\ & 639 \\ & 387 \end{aligned}$	$\begin{aligned} & 4.8 \% \\ & 23.5 \% \\ & 44.7 \% \\ & 27.0 \% \end{aligned}$	2.94	$\begin{aligned} & 73 \\ & 374 \\ & 923 \\ & 613 \end{aligned}$	$\begin{aligned} & 3.7 \% \\ & 18.9 \% \\ & 46.5 \% \\ & 30.9 \% \end{aligned}$	3.05	$\begin{aligned} & \text { 54 } \\ & 296 \\ & 731 \\ & 514 \end{aligned}$	$\begin{aligned} & 3.4 \% \\ & 18.6 \% \\ & 45.8 \% \\ & 32.2 \% \end{aligned}$	3.07	

	Somewhat agree/ Strongly agree (Percentages combined)		71.7\%			77.5\%			78.1\%		**Low/High
All students have the potential to excel in my courses	1 Disagree Strongly 2 Disagree Somewhat 3 Agree Somewhat 4 Agree Strongly Somewhat agree/ Strongly agree (Percentages combined)	$\begin{gathered} 27 \\ 144 \\ 473 \\ 793 \end{gathered}$	$\begin{aligned} & 1.9 \% \\ & 10.0 \% \\ & 32.9 \% \\ & 55.2 \% \\ & 88.1 \% \end{aligned}$	3.41	$\begin{gathered} 28 \\ 192 \\ 625 \\ 1161 \end{gathered}$	$\begin{gathered} 1.4 \% \\ 9.6 \% \\ 31.2 \% \\ 57.9 \% \\ \\ 89.0 \% \end{gathered}$	3.46	$\begin{gathered} 25 \\ 146 \\ 510 \\ 929 \end{gathered}$	$\begin{aligned} & 1.1 .6 \\ & 9.1 \% \\ & 31.7 \% \\ & 57.7 \% \\ & \hline 89.4 \% \end{aligned}$	3.46	
It is primarily up to individual students whether they succeed in my courses	1 Disagree Strongly 2 Disagree Somewhat 3 Agree Somewhat 4 Agree Strongly Somewhat agree/ Strongly agree (Percentages combined)	$\begin{gathered} 26 \\ 111 \\ 702 \\ 603 \end{gathered}$	$\begin{gathered} 1.8 \% \\ 7.7 \% \\ 48.7 \% \\ 41.8 \% \\ 90.5 \% \end{gathered}$	3.31	$\begin{gathered} 29 \\ 155 \\ 1010 \\ 813 \end{gathered}$	$\begin{aligned} & 1.4 \% \\ & 7.7 \% \\ & 50.3 \% \\ & 40.5 \% \\ & 90.8 \% \end{aligned}$	3.30	$\begin{aligned} & 30 \\ & 150 \\ & 842 \\ & 590 \end{aligned}$	$\begin{gathered} -\cdots .9 \% \\ 9.3 \% \\ 52.2 \% \\ 36.6 \% \\ \\ \hline 88.8 \% \end{gathered}$	3.24	
This institution takes responsibility for educating underprepared students	1 Disagree strongly 2 Disagree Somewhat 3 Agree Somewhat 4 Agree Strongly Somewhat agree/ Strongly agree (Percentages combined)	$\begin{aligned} & 90 \\ & 379 \\ & 727 \\ & 212 \end{aligned}$	6.4\% 26.9\% 51.6\% 15.1\% 66.7\%	2.75	$\begin{aligned} & 152 \\ & 600 \\ & 917 \\ & 296 \end{aligned}$	7.7% 30.5\% 46.7\% 15.1\% 61.7\%	2.69	$\begin{aligned} & 133 \\ & 512 \\ & 721 \\ & 220 \end{aligned}$	8.4\% 32.3\% 45.5\% 13.9\% 59.3\%	2.65	**Low/High
There is adequate support for faculty development	1 Disagree Strongly 2 Disagree Somewhat 3 Agree Somewhat 4 Agree Strongly Somewhat agree/ Strongly agree (Percentages combined)	$\begin{aligned} & 200 \\ & 363 \\ & 598 \\ & 269 \end{aligned}$	14.0\% 25.4\% 41.8\% 18.8\% 60.6\%	2.65	$\begin{aligned} & 195 \\ & 409 \\ & 913 \\ & 482 \end{aligned}$	9.8% 20.5\% 45.7\% 24.1\% 69.8\%	2.84	$\begin{aligned} & 192 \\ & 496 \\ & 653 \\ & 273 \end{aligned}$	11.9\% 30.7\% 40.5\% 16.9\% 57.4\%	2.62	**Med/High
My teaching is valued by faculty in my department	1 Disagree Strongly 2 Disagree Somewhat 3 Agree Somewhat 4 Agree Strongly Somewhat agree/ Strongly agree (Percentages combined)	$\begin{aligned} & 59 \\ & 114 \\ & 478 \\ & 777 \end{aligned}$	4.1\% 8.0\% 33.5\% 54.4\% 87.9\%	3.38	$\begin{gathered} 57 \\ 163 \\ 673 \\ 1106 \end{gathered}$	$\begin{aligned} & 2.9 \% \\ & 8.2 \% \\ & 33.7 \% \\ & 55.3 \% \\ & 89.0 \% \end{aligned}$	3.41	$\begin{aligned} & 50 \\ & 126 \\ & 550 \\ & 890 \end{aligned}$	$\begin{gathered} 3.1 \% \\ 7.8 \% \\ 34.0 \% \\ 55.1 \% \\ \hline 89.1 \% \end{gathered}$	3.41	
Institutional Priority: Develop a sense of community among students and faculty	1 Low Priority 2 Medium Priority 3 High Priority 4 Highest Priority High/Highest (Percentages combined)	$\begin{aligned} & 112 \\ & 342 \\ & 687 \\ & 296 \end{aligned}$	7.8\% 23.8\% 47.8\% 20.6\% 68.4\%	2.81	$\begin{aligned} & 167 \\ & 535 \\ & 953 \\ & 333 \end{aligned}$	8.4\% 26.9\% 47.9\% 16.8\% 64.7\%	2.73	$\begin{aligned} & 119 \\ & 434 \\ & 733 \\ & 322 \end{aligned}$	$\begin{aligned} & 7.4 \% \\ & 27.0 \% \\ & 45.6 \% \\ & 20.1 \% \\ & 65.6 \% \end{aligned}$	2.78	
Structure your courses so that students master a conceptual understanding of course content	1 Not at All 2 To Some Extent 3 To a Great Extent	$\begin{gathered} 15 \\ 298 \\ 1119 \end{gathered}$	$\begin{aligned} & 1.0 \% \\ & 20.8 \% \\ & 78.1 \% \end{aligned}$	2.77	$\begin{gathered} 20 \\ 358 \\ 1614 \end{gathered}$	$\begin{aligned} & 1.0 \% \\ & 18.0 \% \\ & 81.0 \% \end{aligned}$	2.80	$\begin{gathered} 16 \\ 289 \\ 1299 \end{gathered}$	$\begin{aligned} & 1.0 \% \\ & 18.0 \% \\ & 81.0 \% \end{aligned}$	2.80	
Help students evaluate the quality and reliability of information	1 Not Important 2 Somewhat Important 3 Very Important 4 Essential Essential/Very Important (Percentages combined)	$\begin{aligned} & 233 \\ & 436 \\ & 510 \\ & 252 \end{aligned}$	16.3\% 30.5\% 35.6\% 17.6\% 53.2\%	2.55	$\begin{aligned} & 280 \\ & 640 \\ & 717 \\ & 349 \end{aligned}$	14.1\% 32.2\% 36.1\% 17.6\% 53.7\%	2.57	$\begin{aligned} & 259 \\ & 452 \\ & 552 \\ & 323 \end{aligned}$	16.3\% 28.5\% 34.8\% 20.4\% 55.2\%	2.59	
Stress: Committee work	1 Not Applicable 2 Not at All 3 Somewhat 4 Extensive	$\begin{aligned} & 100 \\ & 560 \\ & 644 \\ & 133 \end{aligned}$	$\begin{aligned} & 7.0 \% \\ & 39.0 \% \\ & 44.8 \% \\ & 9.3 \% \end{aligned}$	2.56	$\begin{aligned} & 100 \\ & 709 \\ & 966 \\ & 228 \end{aligned}$	$\begin{aligned} & 5.0 \% \\ & 35.4 \% \\ & 48.2 \% \\ & 11.4 \% \end{aligned}$	2.66	$\begin{aligned} & 94 \\ & 615 \\ & 729 \\ & 179 \end{aligned}$	$\begin{aligned} & 5.8 \% \\ & 38.0 \% \\ & 45.1 \% \\ & 11.1 \% \end{aligned}$	2.61	
Stress: students	1 Not Applicable 2 Not at All 3 Somewhat 4 Extensive	$\begin{aligned} & 17 \\ & 560 \\ & 764 \\ & 97 \\ & \hline 97 \end{aligned}$	$\begin{gathered} 1.2 \% \\ 38.9 \% \\ 53.1 \% \\ 6.7 \% \end{gathered}$	2.65	$\begin{gathered} 12 \\ 681 \\ 681 \\ 1150 \\ 162 \end{gathered}$	$\begin{gathered} .6 \\ .6 \% \\ 34.0 \% \\ 57.4 \% \\ 8.7 .1 \% \end{gathered}$	2.73	$\begin{aligned} & 15 \\ & 613 \\ & 872 \\ & 115 \end{aligned}$	$\begin{gathered} .9 \% \\ 38.0 \% \\ 54.0 \% \\ 7.1 \% \end{gathered}$	2.67	
Stress: Teaching load	1 Not Applicable	51	3.5\%		28	1.4\%		27	1.7\%		

	2 Not at All 3 Somewhat 4 Extensive	$\begin{aligned} & 490 \\ & 660 \\ & 238 \end{aligned}$	$\begin{aligned} & 34.1 \% \\ & 45.9 \% \\ & 16.5 \% \end{aligned}$	2.75	$\begin{aligned} & 685 \\ & 975 \\ & 312 \end{aligned}$	$\begin{aligned} & 34.3 \% \\ & 48.8 \% \\ & 15.6 \% \end{aligned}$	2.79	$\begin{aligned} & 623 \\ & 728 \\ & 240 \end{aligned}$	$\begin{aligned} & 38.5 \% \\ & 45.0 \% \\ & 14.8 \% \end{aligned}$	2.73	
Stress: Lack of personal time	1 Not Applicable 2 Not at All 3 Somewhat 4 Extensive	$\begin{aligned} & 18 \\ & 372 \\ & 660 \\ & 388 \end{aligned}$	$\begin{gathered} 1.3 \% \\ 25.9 \% \\ 45.9 \% \\ 27.0 \% \end{gathered}$	2.99	$\begin{gathered} 7 \\ 475 \\ 978 \\ 548 \\ \hline \end{gathered}$		3.03	$\begin{gathered} 7 \\ 396 \\ 755 \\ 457 \end{gathered}$	$\begin{gathered} .4 \% \\ 24.5 \% \\ 46.7 \% \\ 28.3 \% \end{gathered}$	3.03	
Stress: Working with underprepared students	1 Not Applicable 2 Not at All 3 Somewhat 4 Extensive	$\begin{aligned} & \text { "36 } \\ & \hline \\ & 459 \\ & 793 \\ & 793 \\ & 149 \end{aligned}$	$\begin{aligned} & 2.7 . \\ & 25.9 \\ & 31.9 \% \\ & 55.2 \% \\ & 10.4 \% \end{aligned}$	2.73	$\begin{gathered} 37 \\ 748 \\ 1040 \\ 181 \end{gathered}$	$\begin{aligned} & 1.7 .8 \\ & 37.3 \% \\ & 51.8 \% \\ & 9.0 \% \end{aligned}$	2.68	$\begin{gathered} 35 \\ 35 \\ 594 \\ 849 \\ 849 \\ 137 \end{gathered}$	$\begin{gathered} 2.2 \% \\ 36.8 \% \\ 52.6 \% \\ 8.5 \% \\ \hline \end{gathered}$	2.67	*Low/High
Stress: Self-imposed high expectations	1 Not Applicable 2 Not at All 3 Somewhat 4 Extensive	$\begin{gathered} 16 \\ 222 \\ 728 \\ 472 \\ 472 \end{gathered}$	$\begin{gathered} 1.1 \% \\ 15.4 \% \\ 50.6 \% \\ 32.8 \% \end{gathered}$	3.15	$\begin{gathered} 9 \\ 250 \\ 1028 \\ 721 \end{gathered}$	$\begin{gathered} . . . \\ .4 \% \\ 12.5 \% \\ 51.2 \% \\ 35.9 \% \end{gathered}$	3.23	$\begin{aligned} & 10 \\ & 250 \\ & 846 \\ & 846 \\ & 512 \end{aligned}$	$\begin{gathered} .6 \% \\ 15.5 \% \\ 52.3 \% \\ 31.6 \% \end{gathered}$	3.15	
How many courses are you teaching this term (include all institutions at which you teach) (e.g., 0,1,2,3)?	$\begin{aligned} & 10 \text { to } 2 \\ & 23 \text { to } \\ & 35+ \end{aligned}$	$\begin{aligned} & 726 \\ & 594 \\ & 138 \end{aligned}$	$\begin{aligned} & 49.8 \% \\ & 40.7 \% \\ & 9.5 \% \end{aligned}$	1.60	$\begin{aligned} & 1184 \\ & 705 \\ & 125 \end{aligned}$	$\begin{aligned} & 59.0 \% \\ & 35.0 \% \\ & 6.2 \% \end{aligned}$	1.47	$\begin{aligned} & 983 \\ & 530 \\ & 113 \end{aligned}$	$\begin{gathered} 60.5 \% \\ 32.6 \% \\ 6.9 \% \end{gathered}$	1.46	**Low/High
Hours per Week: Preparing for teaching (including reading student papers and grading)	$\begin{aligned} & 1 \text { None to } 4 \\ & 25 \text { to } 12 \\ & 313+ \end{aligned}$	$\begin{aligned} & 292-297 \\ & 637 \\ & 519 \\ & 519 \end{aligned}$		2.16	$\begin{aligned} & 386 \\ & 943 \\ & 683 \end{aligned}$	$\begin{aligned} & -\quad-9.2 \% \\ & 46.9 \% \\ & 33.9 \% \\ & \hline \end{aligned}$	2.15	403 714 511	$\begin{aligned} & 24.8 \% \\ & 43.9 \% \\ & 31.4 \end{aligned}$	2.07	*Low/High, **-----------1/-1igh
Participated in organized activivities around enhancing pedagogy and student learning		593 838	$\begin{aligned} & 41.4 \% \\ & 58.6 \% \end{aligned}$	1.59	$\begin{gathered} ------185 \\ 1309 \end{gathered}$	$\begin{aligned} & 34.4 \% \\ & 65.6 \% \end{aligned}$	1.66	632 988	$\begin{aligned} & 39.0 \% \\ & 61.0 \% \end{aligned}$	1.61	
Applied to internal grants for research	1 Not Available 2 Not Eligible 3 No 4 Yes	$\begin{aligned} & 78 \\ & 98 \\ & 968 \\ & 768 \\ & 503 \end{aligned}$	$\begin{gathered} 5.4 \% \\ 6.8 \% \\ 53.1 \% \\ 34.8 \% \end{gathered}$	3.17	$\begin{gathered} 53 \\ 111 \\ 1013 \\ 829 \end{gathered}$	$\begin{gathered} 2.6 \% \\ 5.5 \% \\ 50.5 \% \\ 41.3 \% \end{gathered}$	3.31	$\begin{aligned} & 93 \\ & 94 \\ & 94 \\ & 916 \\ & 520 \end{aligned}$	$\begin{gathered} 5.7 \% \\ 5.8 \% \\ 56.4 \% \\ 32.0 \% \\ \hline \end{gathered}$	3.15	**Med/High
Engaged undergraduates on your research project	$\begin{aligned} & 1 \mathrm{No} \\ & 2 \text { Yes } \end{aligned}$	$\begin{aligned} & 563 \\ & 878 \end{aligned}$	$\begin{aligned} & 39.1 \% \\ & 60.9 \% \end{aligned}$	1.61	$\begin{aligned} & 704 \\ & 1300 \end{aligned}$	$\begin{aligned} & \text { 35.1\% } \\ & 64.9 \% \end{aligned}$	1.65	$\begin{array}{r}649 \\ 970 \\ \hline\end{array}$	$\begin{aligned} & 40.1 \% \\ & 59.9 \% \end{aligned}$	1.60	*Med/High
Worked with undergraduates on a research project	$\begin{aligned} & 1 \text { No } \\ & 2 \text { Yes } \end{aligned}$	$\begin{gathered} 414 \\ 1032 \end{gathered}$	$\begin{aligned} & 28.6 \% \\ & 71.4 \% \end{aligned}$	1.71	$\begin{gathered} 531 \\ 1471 \end{gathered}$	$\begin{aligned} & 26.5 \% \\ & 73.5 \% \end{aligned}$	1.73	527 1096	$\begin{aligned} & 32.5 \% \\ & 67.5 \% \end{aligned}$	1.68	**Med/High
Presented with undergraduate students at conferences	1 Not at All 2 To Some Extent 3 To a Great Extent	$\begin{aligned} & 781 \\ & 439 \\ & 199 \end{aligned}$	$\begin{aligned} & 55.0 \% \\ & 30.9 \% \\ & 14.0 \% \end{aligned}$	1.59	$$	$\begin{aligned} & 53.6 \% \\ & 30.7 \% \\ & 15.7 \% \end{aligned}$	1.62	953 456 194	$\begin{aligned} & 59.5 \% \\ & 28.4 \% \\ & 12.1 \% \end{aligned}$	1.53	*Med/High
Published with undergraduates	1 Not at All 2 To Some Extent 3 To a Great Extent	$\begin{aligned} & 971 \\ & 346 \\ & 98 \end{aligned}$	$\begin{aligned} & 68.6 \% \\ & 24.5 \% \\ & 6.9 \% \end{aligned}$	1.38	$\begin{gathered} 1194 \\ 536 \\ 225 \\ \hline \end{gathered}$	$\begin{aligned} & 61.1 \% \\ & 27.4 \% \\ & 11.5 \% \end{aligned}$	1.50	1063 404 132	$\begin{gathered} 66.5 \% \\ 25.3 \% \\ 8.3 \% \\ \hline \end{gathered}$	1.42	*Med/High
Published articles in academic or professional journals	$\begin{aligned} & 1 \text { None } \\ & 21-2 \\ & 33-4 \\ & 45-10 \\ & 511-20 \\ & 621-50 \\ & 751+ \end{aligned}$	$\begin{aligned} & \text { 284 } \\ & 284 \\ & 262 \\ & 162 \\ & 263 \\ & 190 \\ & 161 \\ & 148 \end{aligned}$	$\begin{aligned} & 19.7 \% \\ & 16.2 \% \\ & 11.2 \% \\ & 18.2 \% \\ & 13.2 \% \\ & 11.2 \% \\ & 10.3 \% \\ & 10 . \\ & \hline \end{aligned}$	3.64	$\begin{aligned} & 284 \\ & 310 \\ & 204 \\ & 332 \\ & 323 \\ & 309 \\ & 245 \end{aligned}$	$\begin{aligned} & \text { 14.2\% } \\ & 15.4 \% \\ & 10.2 \% \\ & 16.5 \% \\ & 16.1 \% \\ & 15.4 \% \\ & 12.2 \% \end{aligned}$	4.00	259 233 168 246 224 252 240	16.0% 14.4% 10.4% 15.2% 13.8% 15.5% 14.8%	4.02	
Published chapters in edited volumes	$\begin{aligned} & \text { 1 None } \\ & 21-2 \\ & 33-4 \\ & 45-10 \\ & 511-20 \\ & 621-50 \\ & 751+ \end{aligned}$	$\begin{gathered} \\ \hline 868 \\ 321 \\ 116 \\ 69 \\ 34 \\ 12 \\ 2 \end{gathered}$	$\begin{gathered} 61.0 \% \\ 22.6 \% \\ 8.2 \% \\ 4.9 \% \\ 2.4 \% \\ .8 \% \\ .8 \% \\ \hline . . \end{gathered}$	1.68	$\begin{gathered} 1111 \\ 479 \\ 200 \\ 130 \\ 36 \\ 18 \\ 2 \end{gathered}$	$\begin{gathered} \text { 56.3\% } \\ 24.2 \% \\ 10.1 \% \\ 6.6 \% \\ 1.8 \% \\ .9 \% \\ .1 \% \\ \hline \end{gathered}$	1.77	835 388 167 118 46 31 7 7	$\begin{gathered} 52.4 \% \\ 24.4 \% \\ 10.5 \% \\ 7.4 \% \\ 2.9 \% \\ 1.9 \% \\ .4 \% \\ \hline \end{gathered}$	1.92	**Low/High
In the past two years, how many of your professional writings have been published or accepted for publication?	$\begin{aligned} & \text { 1 None } \\ & 21-2 \\ & 33-4 \\ & 45-10 \\ & 511-20 \\ & 621+ \end{aligned}$	$\begin{aligned} & 593 \\ & 399 \\ & 207 \\ & 170 \\ & 50 \\ & 24 \\ & \hline \end{aligned}$	$\begin{aligned} & \begin{array}{l} 41.1 \% \\ 27.7 \% \\ 14.3 \% \\ 11.8 \% \\ 3.5 \% \\ 1.7 \% \\ \hline \end{array} \begin{array}{c} \\ \hline \end{array}{ }_{2} \\ & \hline \end{aligned}$	2.14	$\begin{gathered} 647 \\ 602 \\ 602 \\ 329 \\ 301 \\ 95 \\ 41 \end{gathered}$	32.1\% 29.9\% 16.3\% 14.9\% 4.7\% 2.0\%	2.36	534 464 258 234 82 52	$\begin{aligned} & \begin{array}{l} 32.9 \% \\ 28.6 \% \\ 15.9 \% \\ 14.4 \% \\ 5.0 \% \\ 3.2 \% \\ \hline \end{array} \end{aligned}$	2.40	**Low/High

Note: Women efficiency means that efficiency scores were based on the production of STEM degrees by female students seeking a STEM degree

		"Low" Efficiency Institutions ($\mathrm{N}=111$ Institutions; 1836 faculty)			"Medium" Efficiency Institutions ($\mathrm{N}=66$ Institutions; 1375 faculty)			"High" Efficiency Institutions ($\mathrm{N}=43$ Institutions; 1894 faculty)			
		Count	Column Valid N \%	Mean Score	Count	Column Valid N \%	Mean Score	Count	Column Valid N \%	Mean Score	Significant Differences Between Efficiency Groups
Provide instructions clearly delineating what students are to do to complete the assignment	1 Not at All 2 Occasionally 3 Frequently	$\begin{gathered} 37 \\ 186 \\ 1587 \end{gathered}$	$\begin{gathered} 2.0 \% \\ 10.3 \% \\ 87.7 \% \end{gathered}$	2.86	$\begin{gathered} 17 \\ 160 \\ 1180 \end{gathered}$	$\begin{gathered} 1.3 \% \\ 11.8 \% \\ 87.0 \% \end{gathered}$	2.86	$\begin{gathered} 25 \\ 178 \\ 1657 \end{gathered}$	$\begin{gathered} 1.3 \% \\ 9.6 \% \\ 89.1 \% \end{gathered}$	2.88	
Explicitly link the assignment with course goals or learning objectives	1 Not at All 2 Occasionally 3 Frequently	$\begin{gathered} 159 \\ 586 \\ 1058 \end{gathered}$	$\begin{gathered} 8.8 \% \\ 32.5 \% \\ 58.7 \% \end{gathered}$	2.50	$\begin{gathered} 91 \\ 497 \\ 768 \end{gathered}$	$\begin{gathered} 6.7 \% \\ 36.7 \% \\ 56.6 \% \end{gathered}$	2.50	$\begin{gathered} 131 \\ 528 \\ 1195 \end{gathered}$	$\begin{gathered} 7.1 \% \\ 28.5 \% \\ 64.5 \% \end{gathered}$	2.57	**High/Med
Engage deeply with a significant challenge or question within your discipline	1 Not at All 2 Occasionally 3 Frequently	$\begin{aligned} & 296 \\ & 770 \\ & 739 \end{aligned}$	$\begin{aligned} & 16.4 \% \\ & 42.7 \% \\ & 40.9 \% \end{aligned}$	2.25	$\begin{aligned} & 198 \\ & 554 \\ & 605 \end{aligned}$	$\begin{aligned} & 14.6 \% \\ & 40.8 \% \\ & 44.6 \% \end{aligned}$	2.25	$\begin{aligned} & 207 \\ & 741 \\ & 904 \end{aligned}$	$\begin{aligned} & 11.2 \% \\ & 40.0 \% \\ & 48.8 \% \end{aligned}$	2.38	**High/Low **High/Low
Write in the specific style or format of your discipline	1 Not at All 2 Occasionally 3 Frequently	$\begin{aligned} & 250 \\ & 564 \\ & 994 \end{aligned}$	$\begin{aligned} & 13.8 \% \\ & 31.2 \% \\ & 55.0 \% \end{aligned}$	2.41	$\begin{aligned} & 185 \\ & 429 \\ & 737 \end{aligned}$	$\begin{aligned} & 13.7 \% \\ & 31.8 \% \\ & 54.6 \% \end{aligned}$	2.41	$\begin{aligned} & 285 \\ & 579 \\ & 984 \end{aligned}$	$\begin{aligned} & 15.4 \% \\ & 31.3 \% \\ & 53.2 \% \end{aligned}$	2.38	
Use research methods from your discipline in field or applied settings	1 Not at All 2 Occasionally 3 Frequently	$\begin{aligned} & 350 \\ & 662 \\ & 793 \end{aligned}$	$\begin{aligned} & 19.4 \% \\ & 36.7 \% \\ & 43.9 \% \end{aligned}$	2.25	$\begin{aligned} & 250 \\ & 504 \\ & 602 \end{aligned}$	$\begin{aligned} & 18.4 \% \\ & 37.2 \% \\ & 44.4 \% \end{aligned}$	2.26	$\begin{aligned} & 309 \\ & 609 \\ & 930 \end{aligned}$	$\begin{aligned} & 16.7 \% \\ & 33.0 \% \\ & 50.3 \% \end{aligned}$	2.34	*High/Med, ${ }^{* * H}$ High/Low
Apply learning from both academic and field settings	1 Not at All 2 Occasionally 3 Frequently	$\begin{aligned} & 438 \\ & 610 \\ & 754 \end{aligned}$	$\begin{aligned} & 24.3 \% \\ & 33.9 \% \\ & 41.8 \% \end{aligned}$	2.18	$\begin{aligned} & 340 \\ & 453 \\ & 560 \end{aligned}$	$\begin{aligned} & 25.1 \% \\ & 33.5 \% \\ & 41.4 \% \end{aligned}$	2.16	$\begin{aligned} & 401 \\ & 590 \\ & 855 \end{aligned}$	$\begin{gathered} 21.7 \% \\ 32.0 \% \\ 46.3 \% \end{gathered}$	2.25	
Describe how different perspectives would affect the interpretation of a question or issue in your discipline	1 Not at All 2 Occasionally 3 Frequently	$\begin{aligned} & 544 \\ & 781 \\ & 474 \end{aligned}$	$\begin{aligned} & 30.2 \% \\ & 43.4 \% \\ & 26.3 \% \end{aligned}$	1.96	$\begin{aligned} & 440 \\ & 575 \\ & 341 \end{aligned}$	$\begin{aligned} & 32.4 \% \\ & 42.4 \% \\ & 25.1 \% \end{aligned}$	1.93	$\begin{aligned} & 529 \\ & 784 \\ & 533 \end{aligned}$	$\begin{aligned} & 28.7 \% \\ & 42.5 \% \\ & 28.9 \% \end{aligned}$	2.00	
Weigh the meaning and significance of evidence	1 Not at All 2 Occasionally 3 Frequently	$\begin{aligned} & 219 \\ & 587 \\ & 998 \end{aligned}$	$\begin{aligned} & 12.1 \% \\ & 32.5 \% \\ & 55.3 \% \end{aligned}$	2.43	$\begin{aligned} & 158 \\ & 427 \\ & 769 \end{aligned}$	$\begin{aligned} & 11.7 \% \\ & 31.5 \% \\ & 56.8 \% \end{aligned}$	2.45	$\begin{gathered} 233 \\ 574 \\ 1048 \end{gathered}$	$\begin{aligned} & 12.6 \% \\ & 30.9 \% \\ & 56.5 \% \end{aligned}$	2.44	
Provide feedback on drafts or work still in progress	1 Not at All 2 Occasionally 3 Frequently	$\begin{aligned} & 246 \\ & 864 \\ & 696 \end{aligned}$	$\begin{aligned} & 13.6 \% \\ & 47.8 \% \\ & 38.5 \% \end{aligned}$	2.25	$\begin{aligned} & 184 \\ & 686 \\ & 481 \end{aligned}$	$\begin{aligned} & 13.6 \% \\ & 50.8 \% \\ & 35.6 \% \end{aligned}$	2.22	$\begin{aligned} & 284 \\ & 891 \\ & 682 \end{aligned}$	$\begin{aligned} & 15.3 \% \\ & 48.0 \% \\ & 36.7 \% \end{aligned}$	2.21	
Grading on a curve	1 None 2 Some 3 Most 4 All All/Most (Percentages combined)	$\begin{gathered} 1012 \\ 406 \\ 175 \\ 190 \end{gathered}$	$\begin{gathered} 56.8 \% \\ 22.8 \% \\ 9.8 \% \\ 10.7 \% \\ 21.3 \% \end{gathered}$	1.74	$\begin{aligned} & 691 \\ & 315 \\ & 173 \\ & 153 \end{aligned}$	$\begin{aligned} & 51.9 \% \\ & 23.6 \% \\ & 13.0 \% \\ & 11.5 \% \\ & 24.5 \% \end{aligned}$	1.84	$\begin{aligned} & 919 \\ & 394 \\ & 238 \\ & 281 \end{aligned}$	$\begin{aligned} & 50.2 \% \\ & 21.5 \% \\ & 13.0 \% \\ & 15.3 \% \\ & 28.3 \% \end{aligned}$	1.94	**Low/High **Low/High
Rubric-based assessment	1 None 2 Some 3 Most 4 All	$\begin{aligned} & 334 \\ & 483 \\ & 468 \\ & 492 \end{aligned}$	$\begin{aligned} & 18.8 \% \\ & 27.2 \% \\ & 26.3 \% \\ & 27.7 \% \end{aligned}$	2.63	$\begin{aligned} & 249 \\ & 413 \\ & 331 \\ & 335 \end{aligned}$	$\begin{aligned} & 18.8 \% \\ & 31.1 \% \\ & 24.9 \% \\ & 25.2 \% \end{aligned}$	2.57	$\begin{aligned} & 407 \\ & 467 \\ & 472 \\ & 484 \end{aligned}$	$\begin{aligned} & 22.2 \% \\ & 25.5 \% \\ & 25.8 \% \\ & 26.4 \% \end{aligned}$	2.56	

	All/Most (Percentages combined)		54.0\%			50.2\%			52.2\%		
Class discussions	1 None	151	8.4\%		87	6.4\%		92	4.9\%		
	2 Some	454	25.3\%		339	25.1\%		419	22.5\%		
	3 Most	458	25.5\%	2.99	355	26.3\%	3.04	410	22.0\%	3.18	
	$4 \text { All }$	734	40.8\%		570	42.2\%		940	50.5\%		
	All/Most (Percentages combined)		66.3\%						72.5\%		**Low/High
Cooperative learning (small	1 None	200	11.2\%		137	10.1\%		225	12.1\%		
groups)	2 Some	577	32.2\%		414	30.6\%		589	31.7\%		
	3 Most	483	26.9\%	2.75	389	28.7\%	2.80	498	26.8\%	2.73	
	4 All	533	29.7\%		414	30.6\%		545	29.3\%		
	All/Most (Percentages combined)		56.7\%			59.3\%			56.2\%		
Experiential learning/Field studies	1 None	704	39.4\%		544	40.4\%		711	38.4\%		
	2 Some	520	29.1\%		385	28.6\%		542	29.3\%		
	3 Most	315	17.6\%	2.06	237	17.6\%	2.04	312	16.9\%	2.09	
	4 All	247	13.8\%		181	13.4\%		285	15.4\%		
	All/Most (Percentages combined)		31.5\%								
Performances/Demonstrations		627	35.1\%		461	34.1\%		686	37.0\%		
	2 Some	539	30.2\%		434	32.1\%		529	28.5\%		
	3 Most	376	21.0\%	2.13	264	19.5\%	2.14	354	19.1\%	2.13	
	4 All	245	13.7\%		193	14.3\%		287	15.5\%		
	All/Most (Percentages combined)								34.5\%		
Group projects		333	18.6\%		199	14.7\%		338	18.2\%		
	2 Some	639	35.7\%		474	35.0\%		651	35.0\%		
	3 Most	465	25.9\%	2.47	341	25.2\%	2.61	476	25.6\%	2.50	
	4 All	355	19.8\%		340	25.1\%		394	21.2\%		
	All/Most (Percentages combined)										
Student-selected topics for course	1 None	682	38.0\%		512	37.9\%		668	36.0\%		
content	2 Some	826	46.0\%		598	44.3\%		812	43.7\%		
	3 Most	184	10.3\%	1.84	150	11.1\%	1.87	231	12.4\%	1.92	
	4 All	103	5.7\%		90	6.7\%		146	7.9\%		
	All/Most (Percentages combined)		16.0\%			17.8\%					*Low/High
Reflective writing/journaling	1 None	972	54.3\%		718	53.2\%		1084	58.5\%		
	2 Some	511	28.6\%		402	29.8\%		450	24.3\%		
	3 Most	174	9.7\%	1.70	138	10.2\%	1.70	191	10.3\%	1.66	
	4 All	132	7.4\%		91	6.7\%		129	7.0\%		
	All/Most (Percentages combined)		17.1\%			17.0\%			17.3\%		
Using real-life problems	1 None	85	4.7\%		48	3.5\%		108	5.8\%		

[1"y courses	3 Agree Somewhat 4 Agree Strongly Somewhat agree/ Strongly agree (Percentages combined)	$\begin{aligned} & 923 \\ & 726 \end{aligned}$	$\begin{aligned} & 50.9 \% \\ & 40.0 \% \\ & \\ & 90.9 \% \end{aligned}$	3.30	$\begin{aligned} & 682 \\ & 545 \end{aligned}$	$\begin{aligned} & 50.1 \% \\ & 40.0 \% \\ & \\ & 90.2 \% \end{aligned}$	3.28	$\begin{aligned} & 932 \\ & 730 \end{aligned}$	$\begin{aligned} & 50.0 \% \\ & 39.2 \% \\ & 89.2 \% \end{aligned}$	3.26	
This institution takes responsibility for educating underprepared students	1 Disagree Strongly 2 Disagree Somewhat 3 Agree Somewhat 4 Agree Strongly Somewhat agree/ Strongly agree (Percentages combined)	$\begin{aligned} & 125 \\ & 487 \\ & 899 \\ & 261 \end{aligned}$	$\begin{gathered} 7.1 \% \\ 27.5 \% \\ 50.7 \% \\ 14.7 \% \\ \\ \\ \text { 65.5\% } \end{gathered}$	2.73	$\begin{aligned} & 109 \\ & 399 \\ & 610 \\ & 216 \end{aligned}$	8.2\% 29.9\% 45.7\% 16.2\% 61.9\%	2.70	$\begin{aligned} & 131 \\ & 583 \\ & 857 \\ & 259 \end{aligned}$	7.2\% 31.9\% 46.8\% 14.2\% 61.0\%	2.68	*Low/High
There is adequate support for faculty development	1 Disagree Strongly 2 Disagree Somewhat 3 Agree Somewhat 4 Agree Strongly Somewhat agree/ Strongly agree (Percentages combined)	$\begin{aligned} & 222 \\ & 476 \\ & 798 \\ & 305 \end{aligned}$	12.3\% 26.4\% 44.3\% 16.9\% 61.2\%	2.66	$\begin{aligned} & 160 \\ & 330 \\ & 568 \\ & 300 \end{aligned}$	11.8\% 24.3\% 41.8\% 22.1\% 63.9\%	2.74	$\begin{aligned} & 198 \\ & 451 \\ & 793 \\ & 419 \end{aligned}$	$\begin{aligned} & 10.6 \% \\ & 24.2 \% \\ & 42.6 \% \\ & 22.5 \% \\ & \\ & 65.1 \% \end{aligned}$	2.77	
My teaching is valued by faculty in my department	1 Disagree Strongly 2 Disagree Somewhat 3 Agree Somewhat 4 Agree Strongly Somewhat agree/ Strongly agree (Percentages combined)	$\begin{gathered} 55 \\ 134 \\ 619 \\ 995 \end{gathered}$	$\begin{gathered} 3.1 \% \\ 7.4 \% \\ 34.3 \% \\ 55.2 \% \\ \\ 89.5 \% \end{gathered}$	3.42	$\begin{gathered} 51 \\ 99 \\ 430 \\ 779 \end{gathered}$	$\begin{gathered} 3.8 \% \\ 7.3 \% \\ 31.6 \% \\ 57.3 \% \\ \\ 89.0 \% \end{gathered}$	3.43	$\begin{gathered} 61 \\ 173 \\ 654 \\ 972 \end{gathered}$	$\begin{gathered} 3.3 \% \\ 9.3 \% \\ 35.2 \% \\ 52.3 \% \\ \\ 87.4 \% \end{gathered}$	3.36	
Develop a sense of community among students and faculty	1 Low Priority 2 Medium Priority 3 High Priority 4 Highest Priority High/Highest (Percentages combined)	$\begin{aligned} & 124 \\ & 471 \\ & 844 \\ & 371 \end{aligned}$	$\begin{gathered} 6.9 \% \\ 26.0 \% \\ 46.6 \% \\ 20.5 \% \\ 67.1 \% \end{gathered}$	2.81	$\begin{aligned} & 100 \\ & 307 \\ & 677 \\ & 267 \end{aligned}$	$\begin{gathered} 7.4 \% \\ 22.7 \% \\ 50.1 \% \\ 19.8 \% \\ 69.9 \% \end{gathered}$	2.82	$\begin{aligned} & 171 \\ & 530 \\ & 835 \\ & 315 \end{aligned}$	$\begin{gathered} 9.2 \% \\ 28.6 \% \\ 45.1 \% \\ 17.0 \% \\ 62.1 \% \end{gathered}$	2.70	**High/Med, *High Low
Structure your courses so that students master a conceptual understanding of course content	1 Not at All 2 To Some Extent 3 To a Great Extent	$\begin{gathered} 22 \\ 358 \\ 1419 \end{gathered}$	$\begin{gathered} 1.2 \% \\ 19.9 \% \\ 78.9 \% \end{gathered}$	2.78	$\begin{gathered} 12 \\ 238 \\ 1111 \end{gathered}$	$\begin{gathered} .9 \% \\ 17.5 \% \\ 81.6 \% \end{gathered}$	2.81	$\begin{gathered} 18 \\ 353 \\ 1477 \\ . .14 \end{gathered}$	$\begin{gathered} 1.0 \% \\ 19.1 \% \\ 79.9 \% \end{gathered}$	2.79	
Help students evaluate the quality and reliability of information	1 Not Important 2 Somewhat Important 3 Very Important 4 Essential Essential/Very Important (Percentages combined)	$\begin{aligned} & 262 \\ & 558 \\ & 632 \\ & 333 \end{aligned}$	$\begin{aligned} & 14.7 \% \\ & 31.3 \% \\ & 35.4 \% \\ & 18.7 \% \\ & 54.1 \% \end{aligned}$	2.58	$\begin{aligned} & 202 \\ & 388 \\ & 500 \\ & 264 \end{aligned}$	$\begin{aligned} & 14.9 \% \\ & 28.7 \% \\ & 36.9 \% \\ & 19.5 \% \\ & 56.4 \% \end{aligned}$	2.61	$\begin{aligned} & 303 \\ & 585 \\ & 628 \\ & 326 \end{aligned}$	$\begin{aligned} & 16.4 \% \\ & 31.8 \% \\ & 34.1 \% \\ & 17.7 \% \\ & 51.8 \% \end{aligned}$	2.53	
Stress: Committee work	1 Not Applicable 2 Not at All 3 Somewhat 4 Extensive	$\begin{aligned} & 140 \\ & 670 \\ & 805 \\ & 196 \end{aligned}$	$\begin{gathered} 7.7 \% \\ 37.0 \% \\ 44.5 \% \\ 10.8 \% \end{gathered}$	2.58	$\begin{gathered} 78 \\ 503 \\ 628 \\ 146 \end{gathered}$	$\begin{gathered} 5.8 \% \\ 37.1 \% \\ 46.3 \% \\ 10.8 \% \end{gathered}$	2.62	$\begin{gathered} 81 \\ 714 \\ 885 \\ 190 \end{gathered}$	$\begin{gathered} 4.3 \% \\ 38.2 \% \\ 47.3 \% \\ 10.2 \% \end{gathered}$	2.63	

Stress: Students	1 Not Applicable 2 Not at All 3 Somewhat 4 Extensive	$\begin{gathered} 23 \\ 637 \\ 1009 \\ 142 \end{gathered}$	$\begin{gathered} 1.3 \% \\ 35.2 \% \\ 55.7 \% \\ 7.8 \% \end{gathered}$	2.70	$\begin{gathered} 6 \\ 491 \\ 761 \\ 99 \end{gathered}$	$\begin{gathered} .4 \% \\ 36.2 \% \\ 56.1 \% \\ 7.3 \% \end{gathered}$	2.70	$\begin{gathered} 15 \\ 728 \\ 993 \\ 132 \end{gathered}$	$\begin{gathered} .8 \% \\ 39.0 \% \\ 53.2 \% \\ 7.1 \% \end{gathered}$	2.66	
Stress: Teaching load	1 Not Applicable 2 Not at All 3 Somewhat 4 Extensive	$\begin{gathered} 54 \\ 630 \\ 818 \\ 307 \end{gathered}$	$\begin{gathered} 3.0 \% \\ 34.8 \% \\ 45.2 \% \\ 17.0 \% \end{gathered}$	2.76	$\begin{gathered} 20 \\ 472 \\ 641 \\ 224 \end{gathered}$	$\begin{gathered} 1.5 \% \\ 34.8 \% \\ 47.2 \% \\ 16.5 \% \end{gathered}$	2.79	$\begin{gathered} 33 \\ 700 \\ 880 \\ 257 \end{gathered}$	$\begin{gathered} 1.8 \% \\ 37.4 \% \\ 47.1 \% \\ 13.7 \% \end{gathered}$	2.73	*Low/High
Stress: Lack of personal time	1 Not Applicable 2 Not at All 3 Somewhat 4 Extensive	$\begin{gathered} 16 \\ 440 \\ 852 \\ 505 \end{gathered}$	$\begin{gathered} .9 \% \\ 24.3 \% \\ 47.0 \% \\ 27.9 \% \end{gathered}$	3.02	$\begin{gathered} 8 \\ 324 \\ 638 \\ 386 \end{gathered}$	$\begin{gathered} .6 \% \\ 23.9 \% \\ 47.1 \% \\ 28.5 \% \end{gathered}$	3.03	$\begin{gathered} 9 \\ 490 \\ 889 \\ 483 \end{gathered}$	$\begin{gathered} .5 \% \\ 26.2 \% \\ 47.5 \% \\ 25.8 \% \end{gathered}$	2.99	
Stress: Working with underprepared students	1 Not Applicable 2 Not at All 3 Somewhat 4 Extensive	37 574 991 208	$\begin{gathered} 2.0 \% \\ 31.7 \% \\ 54.8 \% \\ 11.5 \% \end{gathered}$	2.76	$\begin{gathered} 27 \\ 472 \\ 750 \\ 109 \end{gathered}$	$\begin{gathered} 2.0 \% \\ 34.8 \% \\ 55.2 \% \\ 8.0 \% \end{gathered}$	2.69	$\begin{gathered} 43 \\ 754 \\ 917 \\ 155 \end{gathered}$	$\begin{gathered} 2.3 \% \\ 40.3 \% \\ 49.1 \% \\ 8.3 \% \end{gathered}$	2.63	*Med/High, **Low/High
Stress: Self-imposed High expectations	1 Not Applicable 2 Not at All 3 Somewhat 4 Extensive	$\begin{gathered} 16 \\ 266 \\ 931 \\ 598 \end{gathered}$	$\begin{gathered} .9 \% \\ 14.7 \% \\ 51.4 \% \\ 33.0 \% \end{gathered}$	3.17	$\begin{gathered} 7 \\ 191 \\ 708 \\ 452 \end{gathered}$	$\begin{gathered} .5 \% \\ 14.1 \% \\ 52.1 \% \\ 33.3 \% \end{gathered}$	3.18	$\begin{gathered} 11 \\ 275 \\ 959 \\ 629 \end{gathered}$	$\begin{gathered} .6 \% \\ 14.7 \% \\ 51.2 \% \\ 33.6 \% \end{gathered}$	3.18	
How many courses are you teaching this term (include all institutions at which you teach) (e.g., 0,1,2,3)?	$\begin{aligned} & 10 \text { to } 2 \\ & 2 \text { to } 4 \\ & 35+ \end{aligned}$	$\begin{aligned} & 913 \\ & 751 \\ & 163 \end{aligned}$	$\begin{gathered} 50.0 \% \\ 41.1 \% \\ 8.9 \% \end{gathered}$	1.59	$\begin{aligned} & 767 \\ & 517 \\ & 84 \end{aligned}$	$\begin{gathered} 56.1 \% \\ 37.8 \% \\ 6.1 \% \end{gathered}$	1.50	$\begin{gathered} 1197 \\ 562 \\ \\ 122 \end{gathered}$	$\begin{gathered} 63.6 \% \\ 29.9 \% \\ 6.5 \% \end{gathered}$	1.43	**Low/High, **Med/High
Hours per Week: Preparing for teaching (including reading student papers and grading)	1 None to 4 25 to 12 3 13+	$\begin{aligned} & 351 \\ & 794 \\ & 678 \end{aligned}$	$\begin{aligned} & 19.3 \% \\ & \\ & 43.6 \% \\ & 37.2 \% \end{aligned}$	1.44	$\begin{aligned} & 239 \\ & 627 \\ & 500 \end{aligned}$	$\begin{aligned} & 17.5 \% \\ & \\ & 45.9 \% \\ & 36.6 \% \end{aligned}$	2.19	$\begin{gathered} 496 \\ 862 \\ 521 \end{gathered}$	$\begin{aligned} & 26.4 \% \\ & \text { 45.9\% } \\ & \text { 27.7\% } \end{aligned}$	2.01	**Low/High, **Med/High
Participated in organized activities around enhancing pedagogy and student learning	$\begin{aligned} & 1 \text { No } \\ & 2 \text { Yes } \end{aligned}$	$\begin{gathered} 666 \\ 1135 \end{gathered}$	$\begin{aligned} & 37.0 \% \\ & 63.0 \% \end{aligned}$	1.63	508 844	$\begin{aligned} & 37.6 \% \\ & 62.4 \% \end{aligned}$	1.62	$\begin{gathered} 739 \\ 1131 \end{gathered}$	$\begin{aligned} & 39.5 \% \\ & 60.5 \% \end{aligned}$	1.60	
Applied to internal grants for research	1 Not Available 2 Not Eligible 3 No 4 Yes	$\begin{gathered} 115 \\ 125 \\ 1004 \\ 574 \end{gathered}$	$\begin{gathered} 6.3 \% \\ 6.9 \% \\ 55.2 \% \\ 31.6 \% \end{gathered}$	3.12	$\begin{gathered} 43 \\ 87 \\ 683 \\ 548 \end{gathered}$	$\begin{gathered} 3.2 \% \\ 6.4 \% \\ 50.2 \% \\ 40.3 \% \end{gathered}$	3.28	$\begin{gathered} 64 \\ 95 \\ 1009 \\ 708 \end{gathered}$	$\begin{gathered} 3.4 \% \\ 5.1 \% \\ 53.8 \% \\ 37.7 \% \end{gathered}$	3.26	
Engaged undergraduates on your research project	$\begin{aligned} & 1 \text { No } \\ & 2 \text { Yes } \end{aligned}$	$\begin{aligned} & 815 \\ & 996 \end{aligned}$	$\begin{aligned} & 45.0 \% \\ & 55.0 \% \end{aligned}$	1.55	$\begin{aligned} & 491 \\ & 864 \end{aligned}$	$\begin{aligned} & 36.2 \% \\ & 63.8 \% \end{aligned}$	1.64	$\begin{gathered} 644 \\ 1231 \end{gathered}$	$\begin{aligned} & 34.3 \% \\ & 65.7 \% \end{aligned}$	1.66	**Low/High
Worked with undergraduates on a research project	$\begin{aligned} & 1 \text { No } \\ & 2 \text { Yes } \end{aligned}$	$\begin{gathered} 599 \\ 1218 \end{gathered}$	$\begin{aligned} & 33.0 \% \\ & 67.0 \% \end{aligned}$	1.67	$\begin{aligned} & 385 \\ & 976 \end{aligned}$	$\begin{aligned} & 28.3 \% \\ & 71.7 \% \end{aligned}$	1.72	$\begin{gathered} 521 \\ 1348 \end{gathered}$	$\begin{aligned} & 27.9 \% \\ & 72.1 \% \end{aligned}$	1.72	*Low/High
Presented with undergraduate students at conferences	1 Not at All 2 To Some Extent 3 To a Great Extent	$\begin{gathered} 1059 \\ 510 \\ 207 \end{gathered}$	$\begin{aligned} & 59.6 \% \\ & 28.7 \% \\ & 11.7 \% \end{aligned}$	1.52	$\begin{aligned} & 730 \\ & 409 \\ & 206 \end{aligned}$	$\begin{aligned} & 54.3 \% \\ & 30.4 \% \\ & 15.3 \% \end{aligned}$	1.61	$\begin{gathered} 1026 \\ 560 \\ 258 \end{gathered}$	$\begin{aligned} & 55.6 \% \\ & 30.4 \% \\ & 14.0 \% \end{aligned}$	1.58	
Published with undergraduates	1 Not at All	1286	72.7\%		854	63.7\%		1097	59.7\%		**Low/High

	2 To Some Extent 3 To a Great Extent	$\begin{aligned} & 364 \\ & 118 \end{aligned}$	$\begin{gathered} 20.6 \% \\ 6.7 \% \end{gathered}$	1.34	$\begin{aligned} & 353 \\ & 134 \end{aligned}$	$\begin{aligned} & 26.3 \% \\ & 10.0 \% \end{aligned}$	1.46	549 193	$\begin{aligned} & 29.9 \% \\ & 10.5 \% \end{aligned}$	1.51	
Publish: Articles in academic or professional journals	1 None	382	21.0\%	3.49	218	16.1\%	3.80	245	13.0\%	4.33	**Low/High
	2 1-2	316	17.4\%		224	16.5\%		238	12.7\%		
	3-4	231	12.7\%		141	10.4\%		162	8.6\%		
	4-10	310	17.1\%		231	17.0\%		279	14.8\%		
	$511-20$	226	12.5\%		228	16.8\%		273	14.5\%		
	6 21-50	192	10.6\%		194	14.3\%		331	17.6\%		
	$751+$	158	8.7\%		119	8.8\%		351	18.7\%		
Publish: Chapters in edited volumes	1 None	1096	61.6\%	1.64	809	60.6\%	1.66	917	49.4\%	2.01	**Med/High, Low/High
	$21-2$	423	23.8\%		307	23.0\%		440	23.7\%		
	3 3-4	130	7.3\%		119	8.9\%		229	12.3\%		
	4-10	84	4.7\%		71	5.3\%		160	8.6\%		
	$511-20$	30	1.7\%		20	1.5\%		66	3.6\%		
	6 21-50	13	.7\%		7	.5\%		41	2.2\%		
	751+	4	. 2%		2	.1\%		5	.3\%		
In the past two years, how many of your professional writings have been published or accepted for publication?	1 None	769	42.3\%	2.08	493	36.2\%	2.16	528	28.1\%	2.63	*High/Med, Low/High
	$21-2$	530	29.1\%		433	31.8\%		475	25.3\%		
	3 3-4	236	13.0\%		224	16.5\%		327	17.4\%		
	4-10	199	10.9\%		161	11.8\%		341	18.1\%		
	$511-20$	68	3.7\%		33	2.4\%		126	6.7\%		
	$621+$	18	1.0\%		17	1.2\%		82	4.4\%		

Note: Latino efficiency means that efficiency scores were based on the production of STEM degrees by Latino students seeking a STEM degree.
p < . 05 ; ** p $<.01$

Table 6. Descriptive Statistics for Black Efficiency Percentages Distributed by Group for Variables of Interest

		"Low" Efficiency Institutions ($\mathrm{N}=73$ Institutions; 1882 faculty)			"Medium" Efficiency Institutions ($\mathrm{N}=77$ Institutions; 1622 faculty)			"High" Efficiency Institutions ($\mathrm{N}=76$ Institutions; 1596 faculty)			
		Count	Column Valid N \%	Mean Score	Count	Column Valid N \%	Mean Score	Count	Column Valid N \%	Mean Score	Significant Differences Between Efficiency Groups
Provide instructions clearly delineating what students are to do to complete the assignment	1 Not at All 2 Occasionally 3 Frequently	$\begin{gathered} 24 \\ 196 \\ 1632 \end{gathered}$	$\begin{gathered} 1.3 \% \\ 10.6 \% \\ 88.1 \% \end{gathered}$	2.87	$\begin{gathered} 34 \\ 180 \\ 1383 \end{gathered}$	$\begin{gathered} 2.1 \% \\ 11.3 \% \\ 86.6 \% \end{gathered}$	2.84	$\begin{gathered} 20 \\ 141 \\ 1412 \end{gathered}$	$\begin{gathered} 1.3 \% \\ 9.0 \% \\ 89.8 \% \end{gathered}$	2.88	*Med/High
Explicitly link the assignment with course goals or learning objectives	1 Not at All 2 Occasionally 3 Frequently	$\begin{gathered} 139 \\ 593 \\ 1114 \end{gathered}$	$\begin{gathered} 7.5 \% \\ 32.1 \% \\ 60.3 \% \end{gathered}$	2.53	$\begin{aligned} & 129 \\ & 560 \\ & 905 \end{aligned}$	$\begin{gathered} 8.1 \% \\ 35.1 \% \\ 56.8 \% \end{gathered}$	2.49	$\begin{array}{r} 116 \\ 457 \\ 995 \end{array}$	$\begin{gathered} 7.4 \% \\ 29.1 \% \\ 63.5 \% \end{gathered}$	2.56	**Med/High
Engage deeply with a significant challenge or question within your discipline	1 Not at All 2 Occasionally 3 Frequently	$\begin{aligned} & 259 \\ & 751 \\ & 838 \end{aligned}$	$\begin{aligned} & 14.0 \% \\ & 40.6 \% \\ & 45.3 \% \end{aligned}$	2.31	$\begin{aligned} & 248 \\ & 680 \\ & 671 \end{aligned}$	$\begin{aligned} & 15.5 \% \\ & 42.5 \% \\ & 42.0 \% \end{aligned}$	2.26	$\begin{aligned} & 190 \\ & 633 \\ & 740 \end{aligned}$	$\begin{aligned} & 12.2 \% \\ & 40.5 \% \\ & 47.3 \% \end{aligned}$	2.35	*Med/High
Write in the specific style or format of your discipline	1 Not at All 2 Occasionally 3 Frequently	$\begin{gathered} 274 \\ 578 \\ 996 \end{gathered}$	$\begin{aligned} & 14.8 \% \\ & 31.3 \% \\ & 53.9 \% \end{aligned}$	2.39	$\begin{aligned} & 222 \\ & 533 \\ & 838 \end{aligned}$	$\begin{aligned} & 13.9 \% \\ & 33.5 \% \\ & 52.6 \% \end{aligned}$	2.39	$\begin{aligned} & 217 \\ & 459 \\ & 885 \end{aligned}$	$\begin{aligned} & 13.9 \% \\ & 29.4 \% \\ & 56.7 \% \end{aligned}$	2.43	
Use research methods from your discipline in field or applied settings	1 Not at All 2 Occasionally 3 Frequently	$\begin{aligned} & 333 \\ & 653 \\ & 862 \end{aligned}$	$\begin{aligned} & 18.0 \% \\ & 35.3 \% \\ & 46.6 \% \end{aligned}$	2.29	$\begin{aligned} & 285 \\ & 592 \\ & 720 \end{aligned}$	$\begin{aligned} & 17.8 \% \\ & 37.1 \% \\ & 45.1 \% \end{aligned}$	2.27	$\begin{aligned} & 286 \\ & 540 \\ & 733 \end{aligned}$	$\begin{aligned} & 18.3 \% \\ & 34.6 \% \\ & 47.0 \% \end{aligned}$	2.29	
Apply learning from both academic and field settings	1 Not at All 2 Occasionally 3 Frequently	$\begin{aligned} & 460 \\ & 632 \\ & 753 \end{aligned}$	$\begin{aligned} & 24.9 \% \\ & 34.3 \% \\ & 40.8 \% \end{aligned}$	2.16	$\begin{array}{r} 409 \\ 559 \\ 628 \end{array}$	$\begin{aligned} & 25.6 \% \\ & 35.0 \% \\ & 39.3 \% \end{aligned}$	2.14	$\begin{aligned} & 305 \\ & 473 \\ & 777 \end{aligned}$	$\begin{aligned} & 19.6 \% \\ & 30.4 \% \\ & 50.0 \% \end{aligned}$	2.30	**Med/High, **Low/High
Describe how different perspectives would affect the interpretation of a question or issue in your discipline	1 Not at All 2 Occasionally 3 Frequently	$\begin{aligned} & 590 \\ & 782 \\ & 475 \end{aligned}$	$\begin{aligned} & 31.9 \% \\ & 42.3 \% \\ & 25.7 \% \end{aligned}$	1.94	$\begin{aligned} & 501 \\ & 707 \\ & 385 \end{aligned}$	$\begin{aligned} & 31.5 \% \\ & 44.4 \% \\ & 24.2 \% \end{aligned}$	1.93	$\begin{aligned} & 427 \\ & 645 \\ & 484 \end{aligned}$	$\begin{aligned} & 27.4 \% \\ & 41.5 \% \\ & 31.1 \% \end{aligned}$	2.04	*Low/High **Med/High, *Low/High
Weigh the meaning and significance of evidence	1 Not at All 2 Occasionally 3 Frequently	$\begin{gathered} 205 \\ 592 \\ 1046 \end{gathered}$	$\begin{aligned} & 11.1 \% \\ & 32.1 \% \\ & 56.8 \% \end{aligned}$	2.46	$\begin{aligned} & 223 \\ & 490 \\ & 889 \end{aligned}$	$\begin{aligned} & 13.9 \% \\ & 30.6 \% \\ & 55.5 \% \end{aligned}$	2.42	$\begin{aligned} & 177 \\ & 494 \\ & 890 \end{aligned}$	$\begin{aligned} & 11.3 \% \\ & 31.6 \% \\ & 57.0 \% \end{aligned}$	2.46	
Provide feedback on drafts or work still in progress	1 Not at All 2 Occasionally 3 Frequently	$\begin{aligned} & 257 \\ & 927 \\ & 663 \end{aligned}$	$\begin{aligned} & 13.9 \% \\ & 50.2 \% \\ & 35.9 \% \end{aligned}$	2.22	$\begin{aligned} & 223 \\ & 799 \\ & 571 \end{aligned}$	$\begin{aligned} & 14.0 \% \\ & 50.2 \% \\ & 35.8 \% \end{aligned}$	2.22	$\begin{aligned} & 219 \\ & 720 \\ & 630 \end{aligned}$	$\begin{aligned} & 14.0 \% \\ & 45.9 \% \\ & 40.2 \% \end{aligned}$	2.26	
Grading on a curve	1 None 2 Some 3 Most 4 All All/Most (Percentages combined)	$\begin{aligned} & 920 \\ & 408 \\ & 237 \\ & 254 \\ & 491 \end{aligned}$	$\begin{aligned} & \text { 50.6\% } \\ & \text { 22.4\% } \\ & 13.0 \% \\ & 14.0 \% \\ & 27.0 \% \end{aligned}$	1.90	836 373 181 182 363	53.2\% 23.7\% 11.5\% 11.6\% 23.1\%	1.81	$\begin{aligned} & 862 \\ & 345 \\ & 168 \\ & 180 \\ & \\ & 348 \end{aligned}$	$\begin{aligned} & 55.4 \% \\ & 22.2 \% \\ & 10.8 \% \\ & 11.6 \% \\ & 22.4 \% \end{aligned}$	1.79	
Rubric-based assessment	1 None 2 Some	$\begin{aligned} & 391 \\ & 548 \end{aligned}$	$\begin{aligned} & 21.6 \% \\ & 30.2 \% \end{aligned}$		$\begin{aligned} & 329 \\ & 448 \end{aligned}$	$\begin{aligned} & 21.0 \% \\ & \text { 28.5\% } \end{aligned}$		$\begin{aligned} & 266 \\ & 382 \end{aligned}$	$\begin{aligned} & \text { 17.1\% } \\ & \text { 24.6\% } \end{aligned}$		

	3 Most 4 All All/Most (Percentages combined)	$\begin{aligned} & 441 \\ & 433 \end{aligned}$	$\begin{aligned} & 24.3 \% \\ & 23.9 \% \\ & 48.2 \% \end{aligned}$	2.51	$\begin{aligned} & 386 \\ & 407 \end{aligned}$	$\begin{aligned} & 24.6 \% \\ & 25.9 \% \\ & 50.5 \% \end{aligned}$	2.55	$\begin{aligned} & 439 \\ & 466 \end{aligned}$	$\begin{aligned} & 28.3 \% \\ & 30.0 \% \\ & 58.3 \% \end{aligned}$	2.71	**Med/High, **Low/High
Class discussions	1 None	101	5.5\%	3.10	125	7.9\%	3.01	103	6.6\%	3.11	
	2 Some	447	24.2\%		397	25.0\%		372	23.7\%		
	3 Most	464	25.2\%		409	25.7\%		342	21.8\%		
	4 All	832	45.1\%		660	41.5\%		751	47.9\%		
	All/Most (Percentages combined)		70.3\%								
Cooperative learning (small groups)	1 None	203	11.0\%	2.76	179	11.3\%	2.77	176	11.2\%	2.76	
	2 Some	585	31.7\%		478	30.1\%		509	32.5\%		
	3 Most	509	27.6\%		466	29.3\%		404	25.8\%		
	4 All	547	29.7\%		466	29.3\%		478	30.5\%		
	All/Most (Percentages combined)								56.3\%		
Experiential learning/Field studies	1 None	716	39.0\%	2.05	648	41.0\%	2.04	587	37.5\%	2.12	
	2 Some	555	30.2\%		448	28.4\%		448	28.6\%		
	3 Most	329	17.9\%		247	15.6\%		290	18.5\%		
	4 All	235	12.8\%		236	14.9\%		239	15.3\%		
	All/Most (Percentages combined)		30.7\%								
Performances/Demonstrations	1 None	640	34.8\%	2.15	539	34.1\%	2.14	587	37.4\%	2.11	
	2 Some	559	30.4\%		505	31.9\%		445	28.4\%		
	3 Most	369	20.1\%		318	20.1\%		309	19.7\%		
	4 All	272	14.8\%		220	13.9\%		227	14.5\%		
	All/Most (Percentages combined)										
Group projects	1 None	321	17.4\%	2.53	264	16.6\%	2.54	279	17.8\%	2.50	
	2 Some	647	35.1\%		536	33.7\%		568	36.3\%		
	3 Most	462	25.1\%		457	28.7\%		381	24.3\%		
	4 All	414	22.5\%		334	21.0\%		338	21.6\%		
	All/Most (Percentages combined)		47.5\%			49.7\%			45.9\%		
Student-selected topics for course content	1 None	664	36.0\%	1.89	591	37.2\%	1.84	596	38.0\%	1.90	
	2 Some	850	46.1\%		743	46.8\%		659	42.0\%		
	3 Most	205	11.1\%		165	10.4\%		186	11.9\%		
	4 All	125	6.8\%		88	5.5\%		127	8.1\%		
	All/Most (Percentages combined)		17.9\%			15.9\%			20.0\%		
Reflective writing/journaling	1 None	1040	56.6\%		887	56.1\%	1.65	835	53.2\%	1.75	
	2 Some	501	27.2\%		458	29.0\%		426	27.1\%		
	3 Most	167	9.1\%	1.67	142	9.0\%		183	11.7\%		

	4 Agree Strongly Somewhat agree/ Strongly agree (Percentages combined)	1054	$\begin{aligned} & 56.7 \% \\ & 88.5 \% \end{aligned}$	3.44	857	$\begin{aligned} & 53.8 \% \\ & 88.5 \% \end{aligned}$	3.41	966	61.4\% 90.2\%	3.49	
It is primarily up to individual students whether they succeed in my courses	1 Disagree Strongly 2 Disagree Somewhat 3 Agree Somewhat 4 Agree Strongly Somewhat agree/ Strongly agree (Percentages combined)	$\begin{gathered} 33 \\ 146 \\ 905 \\ 778 \end{gathered}$	$\begin{gathered} 1.8 \% \\ 7.8 \% \\ 48.6 \% \\ 41.8 \% \\ \\ 90.4 \% \end{gathered}$	3.30	$\begin{gathered} 25 \\ 133 \\ 811 \\ 631 \end{gathered}$	$\begin{gathered} 1.6 \% \\ 8.3 \% \\ 50.7 \% \\ 39.4 \% \\ \\ 90.1 \% \end{gathered}$	3.28	$\begin{gathered} 26 \\ 139 \\ 829 \\ 579 \end{gathered}$	$\begin{gathered} 1.7 \% \\ 8.8 \% \\ 52.7 \% \\ 36.8 \% \\ \\ 89.5 \% \end{gathered}$	3.25	
This institution takes responsibility for educating underprepared students	1 Disagree Strongly 2 Disagree Somewhat 3 Agree Somewhat 4 Agree Strongly Somewhat agree/ Strongly agree (Percentages combined)	$\begin{aligned} & 130 \\ & 556 \\ & 878 \\ & 264 \end{aligned}$	$\begin{gathered} 7.1 \% \\ 30.4 \% \\ 48.0 \% \\ 14.4 \% \\ \\ 62.5 \% \end{gathered}$	2.70	$\begin{aligned} & 125 \\ & 460 \\ & 741 \\ & 246 \end{aligned}$	$\begin{gathered} 8.0 \% \\ 29.3 \% \\ 47.1 \% \\ 15.6 \% \\ \\ \text { 62.8\% } \end{gathered}$	2.70	$\begin{aligned} & 111 \\ & 452 \\ & 739 \\ & 229 \end{aligned}$	$\begin{gathered} 7.3 \% \\ 29.5 \% \\ 48.3 \% \\ 15.0 \% \\ \\ 63.2 \% \end{gathered}$	2.71	
There is adequate support for faculty development	1 Disagree Strongly 2 Disagree Somewhat 3 Agree Somewhat 4 Agree Strongly Somewhat agree/ Strongly agree (Percentages combined)	$\begin{aligned} & 177 \\ & 431 \\ & 812 \\ & 430 \end{aligned}$	$\begin{gathered} 9.6 \% \\ 23.3 \% \\ 43.9 \% \\ 23.2 \% \\ \\ 67.1 \% \end{gathered}$	2.81	$\begin{aligned} & 189 \\ & 387 \\ & 680 \\ & 335 \end{aligned}$	$\begin{aligned} & 11.9 \% \\ & 24.3 \% \\ & 42.7 \% \\ & 21.1 \% \\ & \\ & 63.8 \% \end{aligned}$	2.73	$\begin{aligned} & 197 \\ & 439 \\ & 678 \\ & 261 \end{aligned}$	$\begin{aligned} & 12.5 \% \\ & 27.9 \% \\ & 43.0 \% \\ & 16.6 \% \\ & \\ & 59.6 \% \end{aligned}$	2.64	**Low/High
My teaching is valued by faculty in my department	1 Disagree Strongly 2 Disagree Somewhat 3 Agree Somewhat 4 Agree Strongly Somewhat agree/ Strongly agree (Percentages combined)	$\begin{gathered} 55 \\ 166 \\ 627 \\ 1010 \end{gathered}$	$\begin{gathered} 3.0 \% \\ 8.9 \% \\ 33.7 \% \\ 54.4 \% \\ \\ 88.1 \% \end{gathered}$	3.40	$\begin{gathered} 54 \\ 115 \\ 507 \\ 912 \end{gathered}$	$\begin{gathered} 3.4 \% \\ 7.2 \% \\ 31.9 \% \\ 57.4 \% \\ \\ 89.4 \% \end{gathered}$	3.43	$\begin{gathered} 48 \\ 125 \\ 570 \\ 827 \end{gathered}$	$\begin{gathered} 3.1 \% \\ 8.0 \% \\ 36.3 \% \\ 52.7 \% \\ \\ 89.0 \% \end{gathered}$	3.39	
Institutional Priority: Develop a sense of community among students and faculty	1 Low Priority 2 Medium Priority 3 High Priority 4 Highest Priority High/Highest (Percentages combined)	$\begin{aligned} & 137 \\ & 485 \\ & 911 \\ & 319 \end{aligned}$	$\begin{gathered} 7.4 \% \\ 26.2 \% \\ 49.2 \% \\ 17.2 \% \\ 66.4 \% \end{gathered}$	2.76	$\begin{aligned} & 117 \\ & 406 \\ & 741 \\ & 329 \end{aligned}$	$\begin{gathered} 7.3 \% \\ 25.5 \% \\ 46.5 \% \\ 20.7 \% \\ 67.2 \% \end{gathered}$	2.80	$\begin{aligned} & 142 \\ & 408 \\ & 710 \\ & 304 \end{aligned}$	$\begin{gathered} 9.1 \% \\ 26.1 \% \\ 45.4 \% \\ 19.4 \% \\ 64.8 \% \end{gathered}$	2.75	
Structure your courses so that students master a conceptual understanding of course content	1 Not at All 2 To Some Extent 3 To a Great Extent	$\begin{gathered} 18 \\ 355 \\ 1474 \end{gathered}$	$\begin{gathered} 1.0 \% \\ 19.2 \% \\ 79.8 \% \end{gathered}$	2.79	$\begin{gathered} 16 \\ 313 \\ 1261 \end{gathered}$	$\begin{gathered} 1.0 \% \\ 19.7 \% \\ 79.3 \% \end{gathered}$	2.78	$\begin{gathered} 17 \\ 282 \\ 1267 \end{gathered}$	$\begin{gathered} 1.1 \% \\ 18.0 \% \\ 80.9 \% \end{gathered}$	2.80	
Help students evaluate the quality and reliability of information	1 Not Important 2 Somewhat Important	$\begin{aligned} & 270 \\ & 571 \end{aligned}$	$\begin{aligned} & 14.6 \% \\ & 3.9 \% \end{aligned}$		$\begin{aligned} & 235 \\ & 495 \end{aligned}$	$\begin{aligned} & 14.9 \% \\ & 31.4 \% \end{aligned}$		$\begin{aligned} & 266 \\ & 461 \end{aligned}$	$\begin{aligned} & \text { 17.2\% } \\ & \text { 29.8\% } \end{aligned}$		

Engaged undergraduates on your research project	$\begin{aligned} & 1 \text { No } \\ & 2 \text { Yes } \end{aligned}$	$\begin{gathered} 613 \\ 1250 \end{gathered}$	$\begin{aligned} & 32.9 \% \\ & 67.1 \% \end{aligned}$	1.67	$\begin{aligned} & 627 \\ & 972 \end{aligned}$	$\begin{aligned} & 39.2 \% \\ & 60.8 \% \end{aligned}$	1.61	$\begin{aligned} & 697 \\ & 880 \end{aligned}$	$\begin{aligned} & 44.2 \% \\ & 55.8 \% \end{aligned}$	1.56	*Med/High, **Low/High
Worked with undergraduates on a research project	$\begin{aligned} & 1 \text { No } \\ & 2 \text { Yes } \end{aligned}$	$\begin{gathered} 459 \\ 1408 \end{gathered}$	$\begin{aligned} & 24.6 \% \\ & 75.4 \% \end{aligned}$	1.75	$\begin{gathered} 447 \\ 1151 \end{gathered}$	$\begin{aligned} & 28.0 \% \\ & 72.0 \% \end{aligned}$	1.72	$\begin{gathered} 577 \\ 1002 \end{gathered}$	$\begin{aligned} & 36.5 \% \\ & 63.5 \% \end{aligned}$	1.63	${ }^{* *}$ Med/High, **Low/High
Presented with undergraduate students at conferences	1 Not at All 2 To Some Extent 3 To a Great Extent	$\begin{aligned} & 959 \\ & 572 \\ & 305 \end{aligned}$	$\begin{aligned} & 52.2 \% \\ & 31.2 \% \\ & 16.6 \% \end{aligned}$	1.64	$\begin{array}{r} 885 \\ 461 \\ 233 \end{array}$	$\begin{aligned} & 56.0 \% \\ & 29.2 \% \\ & 14.8 \% \end{aligned}$	1.59	$\begin{array}{r} 946 \\ 445 \\ 155 \\ \hline \end{array}$	$\begin{aligned} & 61.2 \% \\ & 28.8 \% \\ & 10.0 \% \end{aligned}$	1.49	*Med/High, **Low/High
Published with undergraduate..	1 Not at All 2 To Some Extent 3 To a Great Extent	$\begin{gathered} 1076 \\ 523 \\ 231 \end{gathered}$	$\begin{aligned} & 58.8 \% \\ & 28.6 \% \\ & 12.6 \% \end{aligned}$	1.54	$\begin{gathered} 1038 \\ 404 \\ 133 \end{gathered}$	$\begin{gathered} 65.9 \% \\ 25.7 \% \\ 8.4 \% \end{gathered}$	1.43	$\begin{gathered} 1109 \\ 343 \\ 87 \end{gathered}$	$\begin{gathered} 72.1 \% \\ 22.3 \% \\ 5.7 \% \end{gathered}$	1.34	**Med/High, **Low/High
Publish: Articles in academic or professional journals	1 None 2 1-2 3 3-4 45-10 5 11-20 6 21-50 $751+$	$\begin{aligned} & 270 \\ & 265 \\ & 186 \\ & 297 \\ & 300 \\ & 280 \\ & 269 \end{aligned}$	14.5\% 14.2\% 10.0\% 15.9\% 16.1\% 15.0\% 14.4\%	4.08	$\begin{aligned} & 295 \\ & 279 \\ & 158 \\ & 285 \\ & 234 \\ & 193 \\ & 158 \end{aligned}$	$\begin{gathered} 18.4 \% \\ 17.4 \% \\ 9.9 \% \\ 17.8 \% \\ 14.6 \% \\ 12.0 \% \\ 9.9 \% \end{gathered}$	3.68	$\begin{aligned} & 280 \\ & 237 \\ & 180 \\ & 248 \\ & 203 \\ & 239 \\ & 192 \end{aligned}$	$\begin{aligned} & 17.7 \% \\ & 15.0 \% \\ & 11.4 \% \\ & 15.7 \% \\ & 12.9 \% \\ & 15.1 \% \\ & 12.2 \% \end{aligned}$	3.85	
Publish: Chapters in edited volumes	1 None 2 1-2 3 3-4 45-10 5 11-20 621-50 $751+$	$\begin{gathered} 1010 \\ 442 \\ 175 \\ 134 \\ 45 \\ 33 \\ 4 \end{gathered}$	$\begin{gathered} 54.8 \% \\ 24.0 \% \\ 9.5 \% \\ 7.3 \% \\ 2.4 \% \\ 1.8 \% \\ .2 \% \end{gathered}$	1.85	$\begin{gathered} 953 \\ 356 \\ 141 \\ 73 \\ 32 \\ 13 \\ 3 \end{gathered}$	$\begin{gathered} 60.7 \% \\ 22.7 \% \\ 9.0 \% \\ 4.6 \% \\ 2.0 \% \\ .8 \% \\ .2 \% \end{gathered}$	1.68	$\begin{gathered} 866 \\ 369 \\ 159 \\ 105 \\ 38 \\ 15 \\ 4 \end{gathered}$	$\begin{gathered} 55.7 \% \\ 23.7 \% \\ 10.2 \% \\ 6.7 \% \\ 2.4 \% \\ 1.0 \% \\ .3 \% \end{gathered}$	1.81	*Med/High
In the past two years, how many of your professional writings have been published or accepted for publication?	1 None 21-2 3 3-4 45-10 5 11-20 6 21+	$\begin{gathered} 605 \\ 512 \\ 315 \\ 283 \\ 101 \\ 56 \end{gathered}$	32.3\% 27.4\% 16.8\% 15.1\% 5.4\% 3.0\%	2.43	$\begin{gathered} 621 \\ 486 \\ 229 \\ 188 \\ 52 \\ 25 \end{gathered}$	$\begin{gathered} 38.8 \% \\ 30.4 \% \\ 14.3 \% \\ 11.7 \% \\ 3.2 \% \\ 1.6 \% \end{gathered}$	2.15	$\begin{gathered} 555 \\ 452 \\ 243 \\ 227 \\ 71 \\ 34 \end{gathered}$	$\begin{gathered} 35.1 \% \\ 28.6 \% \\ 15.4 \% \\ 14.3 \% \\ 4.5 \% \\ 2.1 \% \end{gathered}$	2.31	

Note: Black efficiency means that efficiency scores were based on the production of STEM degrees by Black students seeking a STEM degree.
p<.05; **p < . 01

Appendix A. Variables and Scale

Variable	Scale
In creating assignments for your courses, how often do you: Provide instructions clearly delineating what students are to do to complete the assignment Explicitly link the assignment with course goals or learning objectives	1=Not at all; 2=Occasionally; 3=Frequently
Provide feedback on drafts or work still in progress 2=Occasionally; 3=Frequently	1=Not at all; 2=Occasionally; 3=Frequently

How frequently in the courses you taught in the past year have you given at least one assignment that required students to:

Engage deeply with a significant challenge or question within your discipline

1=Not at all; 2=Occasionally; 3=Frequently
Write in the specific style or format of your discipline
1=Not at all; 2=Occasionally; 3=Frequently
Use research methods from your discipline in field or applied settings

1=Not at all; 2=Occasionally; 3=Frequently

Apply learning from both academic and field settings $\quad 1=$ Not at all; 2=Occasionally; 3=Frequently
Describe how different perspectives would affect the
interpretation of a question or issue in your discipline interpretation of a question or issue in your discipline In how many of the courses that you teach do you use each of the following?

Grading on a curve	one; 2=Some; 3=Most; 4=All
Rubric-based assessment	1=None; 2=Some; 3=Most; 4=All
Class discussions	1=None; 2=Some; 3=Most; 4=All
Cooperative learning (small groups)	1=None; 2=Some; 3=Most; 4=All
Experiential learning/Field studies	1=None; 2=Some; 3=Most; 4=All
Performances/Demonstrations	1=None; 2=Some; 3=Most; 4=All
Group projects	1=None; 2=Some; 3=Most; 4=All
Student-selected topics for course content	1=None; 2=Some; 3=Most; 4=All
Reflective writing/journaling	1=None; 2=Some; 3=Most; 4=All
Using real-life problems	1=None; 2=Some; 3=Most; 4=All
Using student inquiry to drive learning	1=None; 2=Some; 3=Most; 4=All
Student presentations	1=None; 2=Some; 3=Most; 4=All
"Learn before lecture" through multimedia tools (e.g., flipping the classroom)	1=None; 2=Some; 3=Most; 4=All
Techniques to create an inclusive classroom environment for diverse students	1=None; 2=Some; 3=Most; 4=All

Indicate the extent to which you agree or disagree with each of the following:
1=Disagree strongly
2=Disagree somewhat
3=Agree somewhat
4=Agree strongly
1=Disagree strongly
All students have the potential to excel in my courses
2=Disagree somewhat
3=Agree somewhat
4=Agree strongly
1=Disagree strongly
It is primarily up to individual students whether they succeed 2=Disagree somewhat
in my courses
3=Agree somewhat
4=Agree strongly

	1=Disagree strongly
This institution takes responsibility for educating	2=Disagree somewhat
underprepared students	3=Agree somewhat
	4=Agree strongly
	1=Disagree strongly
There is adequate support for faculty development	2=Disagree somewhat
	3=Agree somewhat
	4=Agree strongly
	1=Disagree strongly
My teaching is valued by faculty in my department	2=Disagree somewhat
	3=Agree somewhat
	4=Agree strongly

Indicate how important you believe each priority listed below is at your college or university:
1=Low priority
Institutional Priority: Develop a sense of community among 2=Medium priority students and faculty

3=High priority
4=Highest priority
Please indicate the extent to which you:

Structure your courses so that students master a conceptual	$1=$ Not at all 2=To some extent
understanding of course content	$3=$ To a great extent

Indicate the importance to you of each of the following education goals for undergraduate students:
Help students evaluate the quality and reliability of $\quad 1=$ Not important; 2=Somewhat important; information 3=Very important; 4=Essential
Please indicate the extent to which each of the following has been a source of stress for you during the last two years:

Stress: Committee work	1=Not applicable; 2=Not at all; 3=Somewhat; 4=Extensive
Stress: Students	1=Not applicable; 2=Not at all; 3=Somewhat; 4=Extensive
Stress: Teaching load	1=Not applicable; 2=Not at all; 3=Somewhat; 4=Extensive
Stress: Lack of personal time	1=Not applicable; 2=Not at all; 3=Somewhat; 4=Extensive
Stress: Working with underprepared students	1=Not applicable; 2=Not at all; 3=Somewhat; 4=Extensive
Stress: Self-imposed high expectations	1=Not applicable; 2=Not at all; 3=Somewhat; 4=Extensive
How many courses are you teaching this term (include all institutions at which you teach) (e.g., 0,1,2,3)?	Continuous
Hours per Week: Preparing for teaching (including reading student papers and grading)	$\begin{aligned} & 1=\text { None; } 2=1-4 ; 3=5-8 ; 4=9-12 ; 5=13-16 ; \\ & 6=17-20 ; 7=21+ \end{aligned}$
past two years, have you engaged in any of the following activities? (Mark one for each item)	
	1=Not available
Participated in organized activities around enhancing	2=Not eligible
pedagogy and student learning	3=No
	4=Yes
	1=Not available
	2=Not eligible
Applied for Internal grants for research	3=No
	$4=Y \mathrm{es}$

To what extent do you:

Engaged undergraduates on your research project	$1=$ Not at all
	2=To some extent
	$3=$ To a great extent
	1=Not at all
Worked with undergraduates on a research project	2=To some extent
	$3=$ To a great extent
	1=Not at all
Presented with undergraduate students at conferences	2=To some extent
	$3=$ To a great extent
	1=Not at all
Published with undergraduates	2=To some extent
	$3=$ To a great extent
How many of the following have you published?	
Published: Articles in academic or professional journals	$\begin{aligned} & 1=\text { None; } 2=1-2 ; 3=3-4 ; 4=5-10 ; 5=11-20 ; \\ & 6=21-50 ; 7=51+ \end{aligned}$
Published: Chapters in edited volumes	$\begin{aligned} & 1=\text { None; } 2=1-2 ; 3=3-4 ; 4=5-10 ; 5=11-20 ; \\ & 6=21-50 ; 7=51+ \end{aligned}$
In the past two years, how many of your professional writings have been published or accepted for publication?	$\begin{aligned} & 1=\text { None; } 2=1-2 ; 3=3-4 ; 4=5-10 ; 5=11-20 ; \\ & 6=21+ \end{aligned}$

Note: $\mathrm{n}=5952$ STEM faculty across 265 institutions.

Appendix B. Descriptive Statistics

	Minimum	Maximum	Mean	Std. Deviation
Provide instructions clearly delineating what students are to do to complete the assignment	1	3	2.86	. 393
Explicitly link the assignment with course goals or learning objectives	1	3	2.53	. 632
Engage deeply with a significant challenge or question within your discipline	1	3	2.30	. 700
Write in the specific style or format of your discipline	1	3	2.38	. 733
Use research methods from your discipline in field or applied settings	1	3	2.28	. 754
Apply learning from both academic and field settings	1	3	2.21	. 790
Describe how different perspectives would affect the interpretation of a question or issue in your discipline	1	3	1.98	. 754
Weigh the meaning and significance of evidence	1	3	2.44	. 701
Provide feedback on drafts or work still in progress	1	3	2.24	. 679
Grading on a curve	1	4	1.81	1.043
Rubric-based assessment	1	4	2.59	1.083
Class discussions	1	4	3.08	. 974
Cooperative learning (small groups)	1	4	2.76	1.004
Experiential learning/Field studies	1	4	2.09	1.071
Performances/Demonstrations	1	4	2.15	1.060
Group projects	1	4	2.53	1.015
Student-selected topics for course content	1	4	1.89	. 869
Reflective writing/journaling	1	4	1.69	. 915
Using real-life problems	1	4	3.22	. 908
Using student inquiry to drive learning	1	4	2.70	. 965
Student presentations	1	4	2.49	. 968
"Learn before lecture" through multimedia tools (e.g., flipping the classroom)	1	4	1.90	. 953
Techniques to create an inclusive classroom environment for diverse students	1	4	2.40	1.100
I try to dispel perceptions of competition	1	4	3.02	. 814
I encourage all students to approach me for help	1	4	3.92	. 281
All students have the potential to excel in my courses	1	4	3.46	. 723
It is primarily up to individual students whether they succeed in my courses	1	4	3.28	. 687
This institution takes responsibility for educating underprepared students	1	4	2.70	. 810
There is adequate support for faculty development	1	4	2.72	. 915
My teaching is valued by faculty in my department	1	4	3.40	. 772
Develop a sense of community among students and faculty	1	4	2.78	. 843
Structure your courses so that students master a conceptual understanding of course content	1	3	2.78	. 439
Help students evaluate the quality and reliability of information	1	4	2.58	. 956
Committee work	1	4	2.62	. 756
Students	1	4	2.69	. 617
Teaching load	1	4	2.75	. 742
Lack of personal time	1	4	3.01	. 740

Working with underprepared students	1	4	2.70	.672
Self-imposed high expectations How many courses are you teaching this term (include all institutions at which you teach) (e.g., 0,1,2,3)? (20	1	0	4	3.17
maximum)				

Note: $\mathrm{n}=5952$ STEM faculty across 265 institutions.

Appendix C.
Factor Items and Loadings

Item	Factor Loading	R^{2}
Research-Teaching Nexus		
Engage deeply with a significant challenge or question within your discipline	0.65	0.43
Write in the specific style or format of your discipline	0.59	0.35
Use research methods from your discipline in field or applied settings	0.75	0.57
Apply learning from both academic and field settings	0.57	0.33
Describe how different perspectives would affect the		
interpretation of a question or issue in your discipline	0.68	0.46
Weigh the meaning and significance of evidence	0.64	0.41
Student-Centered Pedagogy		
Class discussions	0.63	0.40
Cooperative learning (small groups)	0.58	0.34
Experiential learning/Field studies	0.54	0.29
Performances/Demonstrations	0.48	0.23
Group projects	0.59	0.34
Student-selected topics for course content	0.51	0.26
Reflective writing/journaling	0.54	0.29
Using real-life problems	0.50	0.25
Using student inquiry to drive learning	0.58	0.34
Student presentations	0.63	0.40
Scholarly Productivity		
\# of published articles in academic and professional journals	n / a	n/a
\# of published chapters in edited volumes \# of professional writings published or accepted for publication in the last two years?	n/a n/a	n/a n/a

Note: n=5952 STEM faculty across 265 institutions.

